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Abstract
Modeling the physical world in the computer raises problems that intertwine discrete andcontinuous aspects. For example, physical objects move along continuous trajectories; yetevery so often discrete events occur, such as collisions between objects.In a model of objects in space, there are many discrete attributes that one may wantto compute: the closest pair, the convex hull, the minimum spanning tree, etc. Whenthe objects are in motion, the values of these attributes change over time, and it becomesnecessary to keep track of them as the objects move.In this thesis, we introduce a general approach, and an analysis framework, for solvingthis type of problems. To keep track of a discrete attribute, we create a new type of datastructure, called a kinetic data structure. A kinetic data structure is made of a proof ofcorrectness of the attribute which is animated through time by a discrete event simulation.

v



www.manaraa.com

vi



www.manaraa.com

Acknowledgements
First and foremost, I wish to thank my seniors Sanjeev Khanna and Ramkumar Guru-murthy. They helped me start on a research track during my �rst few years at Stanford.I am greatly endebted to my advisor Leo Guibas, who is in more ways than it is possibleto say a great source of inspiration.I wish to thank John Hershberger for reading so carefully this thesis, helping me toremove a great many errors from the �nal version.The work presented in this thesis wouldn't have existed without the essential partici-pation of a number of co-authors. I wish to thank �rst Leo Guibas and John Hershberger,and Harish Devarajan, Ramkumar Gurumurthy, Piotr Indyk and Li Zhang. I was also veryglad to interact professionally with Rajeev Motwani, Sanjeev Khanna, Lyle Ramshaw, EricVeach, Olaf Hall-Holt, Je� Erickson, Marc de Berg, Jorge Stol� and Pankaj Agarwal.Stanford would not have been Stanford for me without Chandra, Chiaki, Harish, M�elanie,Piero, Ramkumar, Sanjeev, Sean and Young. My family in France was always supportiveover the phone or by email, in particular my sister Sandra and my aunt Judith.Finally, Pankaj Agarwal and Terry Vance were of tremendous help as I was strugglingto �nish this thesis.

vii



www.manaraa.com



www.manaraa.com

Contents
Abstract vAcknowledgements vii1 Introduction 11.1 Kinetic Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Background and Related Work 152.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.1.1 Plane Sweep Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 162.1.2 Arrangements of Curves and Surfaces . . . . . . . . . . . . . . . . . 182.1.3 Probabilistic Analysis for Geometric Structures . . . . . . . . . . . . 212.1.4 Combinatorial Aspects of Motion . . . . . . . . . . . . . . . . . . . . 232.2 Related Work on Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Maximum Maintenance 293.1 Kinetic Swapping Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.2 Kinetic Heater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343.3 Kinetic Tournament . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 Two-Dimensional Problems 414.1 Convex hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414.1.1 Proof Scheme for the Upper Envelope of Two Chains . . . . . . . . . 42ix



www.manaraa.com

4.1.2 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454.1.3 Divide and Conquer Upper Envelope . . . . . . . . . . . . . . . . . . 484.2 Closest Pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504.2.1 Static Algorithm and Proof Scheme . . . . . . . . . . . . . . . . . . 524.2.2 Kinetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625 Implementation 635.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645.1.1 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645.1.2 Structure of a KDS Implementation . . . . . . . . . . . . . . . . . . 665.1.3 Certi�cate-centered Implementation . . . . . . . . . . . . . . . . . . 685.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695.2.1 Computing Failure Times . . . . . . . . . . . . . . . . . . . . . . . . 705.2.2 Combining Kinetic Data Structures . . . . . . . . . . . . . . . . . . 725.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786 Probabilistic Analysis 796.1 Closest Pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826.2 Voronoi Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866.3 Convex Hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 956.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967 Conclusion 997.1 Competitive Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007.2 Kinetization and Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . 1017.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027.4 Models of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037.5 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Bibliography 105
x



www.manaraa.com

List of Figures1.1 A global time step is not desirable . . . . . . . . . . . . . . . . . . . . . . . 21.2 The convex hull diagram of four items . . . . . . . . . . . . . . . . . . . . . 41.3 Equivalent convex hull diagrams . . . . . . . . . . . . . . . . . . . . . . . . 51.4 Certi�cate failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.5 Proof update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.6 Event loop of a KDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.7 Bouncing and locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.8 Weak certi�cation of a cyclic order . . . . . . . . . . . . . . . . . . . . . . . 103.1 Proof schemes induced by a tournament and by a binary heap . . . . . . . . 303.2 Update procedure for the kinetic swapping heap . . . . . . . . . . . . . . . 303.3 Path dependence of a kinetic heap . . . . . . . . . . . . . . . . . . . . . . . 313.4 A heater update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354.1 Certi�cates for the convex hull KDS . . . . . . . . . . . . . . . . . . . . . . 444.2 Events for the convex hull KDS . . . . . . . . . . . . . . . . . . . . . . . . . 454.3 A y-event in space-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504.4 An x-event in space-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514.5 A divide-and-conquer algorithm for the closest pair . . . . . . . . . . . . . . 524.6 Proof structure for the closest pair . . . . . . . . . . . . . . . . . . . . . . . 544.7 The closest pair is a candidate pair . . . . . . . . . . . . . . . . . . . . . . . 544.8 An x-event for the closest pair . . . . . . . . . . . . . . . . . . . . . . . . . 594.9 A hit-cone event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605.1 The windows of Demokin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655.2 Certi�cate structure for the convex hull diagram . . . . . . . . . . . . . . . 65xi



www.manaraa.com

5.3 Cone structures for the closest pair . . . . . . . . . . . . . . . . . . . . . . . 665.4 Recomputing the convex hull diagram every �t . . . . . . . . . . . . . . . . 665.5 A delicate situation for �nding the next root . . . . . . . . . . . . . . . . . 705.6 Out of order events may lead to an invalid structure . . . . . . . . . . . . . 716.1 Parameterization for the closest pair . . . . . . . . . . . . . . . . . . . . . . 846.2 Some boundary cases for the Voronoi diagram . . . . . . . . . . . . . . . . . 886.3 Parameterization for the Voronoi diagram . . . . . . . . . . . . . . . . . . . 896.4 Parameterization for the convex hull . . . . . . . . . . . . . . . . . . . . . . 92

xii



www.manaraa.com

Chapter 1
Introduction
Modeling the physical world in the computer raises problems that combine discrete andcontinuous aspects. For instance, one may want to compute the smallest distance betweenall pairs of objects in a set. This distance is a real number, but its combinatorial description(the identity of the pair that realize this distance) is a discrete attribute that we call theclosest pair. The closest pair depends on some continuously de�ned parameters (thecoordinates of the objects).The continuous and discrete aspects are even more intertwined in physical simulationsor real-time settings, in which the objects' positions depend on time. As physical objectsmove along continuous trajectories, the smallest distance changes continuously with time.The closest pair, on the other hand, changes only at discrete times. Moreover, in the courseof a physical simulation, the continuous trajectories themselves are subject to occasionaldiscrete changes: when a collision occurs, for instance, the instantaneous velocities of thetwo objects colliding have to be recomputed.One can often reduce the treatment of motion to a sequence of static problems. Considera physical simulation of a gas, in which each molecule is represented as a tiny sphere. Toperform the simulation, one �rst selects a certain global time step �t. Given the state ofthe simulation St at a certain time t, one computes the new positions of all the moleculesat time t+�t, checks for possible collisions, and updates the velocities of all the collidingpairs, to obtain the new state St+�t. One then repeats this step forever.How to choose �t? If it is too large, then we will observe some aberrant behavior1
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2 CHAPTER 1. INTRODUCTION
(a) (b) (c)Figure 1.1: When simulating a system with objects going at vastly varying speeds, a globaltime step is not desirable.(bullets will start going through windows without breaking the glass). If it is too small, alot of computation time will be wasted to check for collisions at times when none occurred.Let's imagine now that �t has been chosen just the right way: between St and St+�t,just a few molecules have collided, and only by a small amount. What this means is thatthe rest of the simulation has barely changed. In other words, there is a temporal coherencebetween steps, and it seems wasteful to restart a full collision checking algorithm fromscratch, while a lot of information could be gained from the previous computation that wasdone on a very similar input.Many existing collision detection systems attempt to take advantage of this temporalcoherence by keeping some data structures from one time step to the next. This thesis, onthe other hand, proposes a new approach that completely gets rid of this global time stepapproach altogether.In a simulation, the trajectory of each object is typically given by a partial di�erentialequation. Numerical methods are used to integrate this equation over time, with a �xed oradaptive time step. So, as a time step is needed to perform this motion integration, whyshould we attempt to get rid of it for the collision detection? To answer this question, let'sconsider the speci�c scenario of a cold gas in a long horizontal tube. At some instant t0,the left end of the tube is heated during one second, and we would like to simulate thepropagation of the heat along the tube (Figure 1.1). In this case, we want to use verydi�erent time steps at the left end of the tube, where molecules are suddenly starting tomove very fast, and at the right end of the tube, where they will keep their initial slowspeed for a while. Hence, even though a time step is needed for each molecule to performtheir motion integration, a global time step should be avoided.One way to perform collision detection is to keep track of the closest pair of molecules,
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3but this is only one of many discrete attributes that could be desirable to maintain e�ciently.For instance, in a ight simulator game, an important computational task is to render acomplex 3D scene on the computer screen. For this purpose, fast rendering hardwarehas been designed to which one directly sends a set of triangles in 3D. The hardwareautomatically clips the invisible parts at the pixel level. The excellent performance of therendering hardware shifted the bottleneck at the communication level: it takes too muchtime to send all the triangles to the hardware. To overcome this bottleneck, special visibilitydata structures are added, which allow a program to cull most of the invisible polygons,and to send only a very small set to the rendering hardware. Such data structures, beingthe result of a discrete computation, are also discrete attributes of the input scene. In ouright simulator, many objects may move at the same time at vastly di�erent speeds (planes,tanks). Once again, we would like to take advantage of the temporal coherence to avoidrecomputing the visibility data structures before every frame is displayed on the screen.In general, we would like to associate with any given attribute that is de�ned on staticdata a so called kinetic equivalent on moving data, that is, a data structure with twofundamental operations:1. A query operation, which returns the attribute of interest (say, the closest pair), orsome value depending on the attribute being maintained (say, the area of the convexhull);2. An update operation1, which updates the structure's internal contents to reect thepositions of the data at the current time.A typical use of such a data structure, e.g., in the ight simulator example, would beto perform sixty times per second: (1) an update call for the visibility structure, and (2) aquery that returns all currently visible polygons (to send them to the rendering hardware).This thesis proposes general techniques to design and analyze data structures speciallysuited for keeping track of discrete attributes of moving data. These data structures arecalled kinetic data structures.1The update operation is di�erent from what is usually understood in the context of dynamic datastructures, in which objects don't move but can be inserted or deleted.
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4 CHAPTER 1. INTRODUCTION
a

b

c

d

Figure 1.2: The convex hull diagram of four items in a given con�guration.1.1 Kinetic Data StructuresWe begin with an informal discussion of the fundamental idea of a kinetic data structure,or KDS for short. In summary, a kinetic data structure is obtained by taking an algorithmfor computing a discrete attribute, turning it into a proof that this attribute is correct, andanimating this proof through time.Our running example will be the convex hull of a small set of points in the plane. Theconvex hull is an in�nite set: it is the set of all convex combinations of the input points. Itscombinatorial description, however, is �nite: it is the (counter-clockwise oriented) circularlist of all input points that appear on the convex hull boundary.Let's make this distinction between geometric objects and their combinatorial descrip-tions even more explicit, and say that we have a set of items, which are abstract entities.A con�guration assigns a position in the plane to each item. The list of items whosepositions constitute the vertices of the convex hull boundary in counter-clockwise order iscalled the convex hull diagram of the item set for a given con�guration.Consider four items a; b; c; d in the con�guration depicted in Figure 1.2. Their convexhull diagram is (a; b; c).A possible proof of this fact involves four tests:a is to the left of bcd is to the left of bcb is to the right of adc is to the left of adWhat this means is that if we change the positions of a; b; c; d anywhere in the plane,
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a

a

a a

b

b
b b

c

c

c

c

d d d dFigure 1.3: Equivalent convex hull diagramstheir convex hull diagram will not change unless at least one of the sideness tests fails(Figure 1.3). Here, we consider oriented lines: a is to the left of bc i� it is to the right of cb.This sideness test (\left of" or \right of") can be expressed as the sign of a determinantdependent on the items' positions:c left of ab := ��������1 xa ya1 xb yb1 xc yc�������� > 0This determinant is in fact twice the signed area of the triangle abc. We denote thisdeterminant, as a function of the con�guration, by CCW(a; b; c), because the triangle abc isoriented counter-clockwise exactly when CCW(a; b; c) > 0.We consider a model of motion in which the position of each item is a known functionof time. The coordinates of item a are (xa(t); ya(t)), where xa; ya are continuous functionsof t. In this model, it is possible to compute the time at which a test fails. In the case ofCCW(a; b; c), it is precisely the time t after the current time for which�������� 1 xa(t) ya(t)1 xb(t) yb(t)1 xc(t) yc(t) �������� = 0 :In Figure 1.4, we restart from Figure 1.2. We let d move to the right and compute thefailure time of each certi�cate of our proof. As the certi�cates prove the correctness of theconvex hull diagram, it is unnecessary to do any computation until one of them fails. Hence,we can put all the certi�cates in a priority queue, ordered by failure time. The failure of acerti�cate is called an event, and requires some processing: we need to update the convexhull diagram, and to devise a new proof of correctness. In Figure 1.5, we have a new proofof correctness after time t1.
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t1 t2

c

d

a

b

Certi�cate Failure timea left of bc neverd left of bc t1b right of ad t2c left of ad neverFigure 1.4: If d moves at constant speed, some certi�cate failures happen when it becomescollinear with certain pairs.
a

b

c

d
Old proof New proofa left of bc a left of bcd left of bc d right of bcb right of ad b right of adc left of ad c left of ad

c

d

a

b

Figure 1.5: A proof update after a certi�cate failure.It appears that there are very few di�erences between the old proof and the new proof.Hence, an event doesn't require a full recomputation, but only a small proof update. Thisis, in essence, where the temporal coherence obtained by continuous motion is exploited inthe framework of kinetic data structures.A kinetic data structure is therefore simply made of two structures: a proof of cor-rectness of an attribute, and a priority queue called the event queue. The continuousproblem has been replaced by a discrete event simulation. The event loop starts from acorrect proof, considers the �rst event, updates the attribute and the proof depending onthe certi�cate that failed, and loops (Figure 1.6). At each step, some certi�cates are deleted(both from the proof of correctness and from the event queue), and some new certi�catesare created (and scheduled in the event queue). In the case of a real-time application, thereis nothing to do until the current time is past the �rst failure time in the event queue. Inthe case of a physical simulation, there is no global time step anymore.As we mentioned in the second paragraph, there is an essential on-line component inmany situations: the velocity of an item may change at arbitrary moments. This may be
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Proof of

correctness
Certificate

failure

Proof update
Attribute
 updateFigure 1.6: The event loop of a kinetic data structure.

c

d

a

b

Figure 1.7: If a point bounces, all certi�cates that depend on it need to have their failuretime recomputed. In the proof of Figure 1.2, all certi�cates except CCW(b; c; d) depend on a.due to collisions in a physical simulation (Figure 1.7), or to a user action in an interactiveenvironment. There are some certi�cates whose failure times depend on that item's equationof motion. When it changes its equation of motion, we need to recompute all those failuretimes. This is straightforward to do with a kinetic data structure, provided we keep foreach item a list of the certi�cates it is involved in. We call such an event a motion planupdate. * * *How do we get a proof of correctness of the convex hull diagram? Well, an algorithm thatcomputes the convex hull diagram performs a number of tests, and these tests are precisely aproof of correctness of the output: this is what it means, after all, to be a correct algorithm.Therefore, for every static convex hull diagram algorithm, we obtain a proof of correctness,for which it is possible to compute all certi�cate failure times. It remains to devise a way toupdate the proof upon a certi�cate failure. The process of transforming a static algorithmor data structure into a kinetic data structure is called kinetization.
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8 CHAPTER 1. INTRODUCTIONIf we have several kinetic data structures that perform the same function, we need ameasure of quality to be able to compare them. The diagram of Figure 1.6 suggests threemeasures of quality that we review here informally.First, the proof of correctness should be small: we'll call a KDS compact if its size isnot too much more than the size of the smallest proof of correctness of the attribute wewish to maintain. For instance, any proof of correctness of the closest pair or the convexhull diagram requires linearly many certi�cates.Second, a proof update should be fast upon a certi�cate failure. We call a KDS re-sponsive if the worst-case cost of processing a certi�cate failure is small|this is the costof discovering how to update the proof and (possibly) the discrete attribute.A third key performance measure for a KDS is the worst-case number of events processed.In our example, each certi�cate failure changed the convex hull, but this might not be thecase in a more complicated setting. We make a distinction between external events, i.e.,those a�ecting the con�guration function we are maintaining (e.g., convex hull or closestpair), and internal events, i.e., those processed by our structure because of its internalneeds, but not a�ecting the desired con�guration function. External events are those thatwe have to pay for in any kinetic data structure. Our aim will be to develop kinetic datastructures for which the total number of events processed by the structure in the worst caseis asymptotically of the same order as, or only slightly larger than, the number of externalevents in the worst case. A KDS meeting this condition will be called e�cient. Notethat in order to compute this worst case, we need to restrict our attention to some speci�cclasses of motion. For instance, Attalah [14] showed that, when considering items whosepositions are low-degree polynomial functions of time, the closest pair and the convex hulldiagram can change at most roughly quadratically many times in the worst case. Thus, ourgoal will be to design kinetic data structures for these attributes that process roughly thatmany internal events for the same class of motions.Finally, we call a KDS local if, at any one time, the maximum number of events in theevent queue that depend on a single object is small. As we noticed a few paragraphs above,this property is crucial for fast handling of motion plan updates (Figure 1.7).
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1.2. FRAMEWORK 91.2 FrameworkIn this section, we de�ne some vocabulary. We will assume here that the reader has a basicknowledge of computational geometry. If this is not the case, the reader is encouraged toread �rst the background material of Chapter 2, and, if this is not enough, one of the severalexcellent books now available on the subject [27, 35, 44, 79, 84].Given a set S of items, a con�guration � associates with each item a point in the plane(or on the real line for one-dimensional con�gurations), called its position. The positionof an item s under con�guration � is denoted s(�), or simply s if the con�guration isclear from the context. An attribute is a function that associates with each con�gurationa combinatorial structure based on S. For an attribute A, we denote by A(�) its valueat con�guration �. For instance, the convex hull diagram, the closest pair, the Voronoidiagram, taken as functions of the con�guration, are all attributes.A certi�cate based on a tuple of items is a continuous function that associates a realnumber with each con�guration of these items. When this real number is positive for agiven con�guration, we say that the certi�cate is valid. When it is negative, we say it isinvalid, and when it is zero, we say it is degenerate. We write [a < b] for the certi�catethat associates with a con�guration � the quantity b(�)� a(�).Given a set of certi�cates that are valid in a certain con�guration �, what does it meanfor this set to be a proof of correctness of an attribute at �? There are in fact two distinctnotions of proof, strong and weak. We say that a set L of certi�cates strongly certi�es anattribute A at � if, for any other con�guration �0 in which all certi�cates of L are valid, wehave A(�0) = A(�).De�ne a scenario to be a path (�t)1t=0 in the space of con�gurations, that is to say,the position a(�t) of an item a as a function of t is continuous. We say that the set Lof certi�cates weakly certi�es A at � if, for any scenario (�t) with �0 = � such that allcerti�cates of L are valid for all t, we have A(�t) = A(�) for all t.If one looks at the space of all con�gurations of S, a set L of certi�cates de�nes a subsetof con�gurations in which all certi�cates are valid. For strong certi�cation, we request thatthe attribute be constant over this whole subset, whereas for weak certi�cation, we requestthat the attribute be constant only over one path-connected component. This calls for afew examples.



www.manaraa.com

10 CHAPTER 1. INTRODUCTION
p1

p2
p5

p4p3

p1

p2
p5

p
p3

Figure 1.8: The certi�cates of the left con�guration are valid in the right con�guration,although the cyclic orders di�er. The certi�cates weakly certify the cyclic order because itis impossible to move continuously from one con�guration to the other without having atleast one certi�cate failure.Example 1.1. Let's �rst consider a one-dimensional con�guration of a set of items, i.e.,a con�guration that associates with each item a real number. The sorted order is anattribute, as it is a permutation of S that depends on the positions. For a given con�guration� in which the sorted order is (s1; : : : ; sn), the set of certi�cates:f[si < si+1] j i = 1; : : : ; n� 1gstrongly certi�es the sorted order. Note that the number of certi�cates is only linear al-though it requires n logn tests in the worst case to compute the sorted order in the com-parison model of computation.Example 1.2. Let's again take a one-dimensional con�guration for S, but this time, therange is the unit circle. The cyclic order is an attribute that associates with a con�gurationthe cyclic list of items around the circle. More precisely, for a con�guration �, the cyclicorder is (s1; : : : ; sn) if the items positions appear in this order counter-clockwise along theunit circle. In this case, the set of certi�cates (with indices modulo n)fCCW(si; si+1; si+2) j i = 1 : : : ngonly weakly certi�es the cyclic order. In both con�gurations of Figure 1.8, all certi�catesare valid, but the cyclic order is not the same in both con�gurations.This example can also be used to show that the set of certi�cates devised by Roos [89]only weakly certi�es the Voronoi diagram.
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1.2. FRAMEWORK 11Often, in geometric algorithms, one assumes that a con�guration is in general positionfor the geometric tests of interest. What this means is that the con�guration is suchthat none of the geometric test/certi�cate used is degenerate in this con�guration. Thisassumption is reasonable in a measure-theoretic sense, as the set of con�gurations that arenot in general position has Lebesgue measure zero in the space of all con�gurations. In otherwords, an in�nitesimal random perturbation of the input will almost surely guarantee thatit is in general position. There are delicate problems that intertwine the general positionassumption and the numerical inaccuracies due to oating point arithmetic, but we willnot try to address them here. In the remainder of this thesis, we use the term \in generalposition" to mean \in general position with respect to the set of certi�cates we consider."When dealing with objects in motion, the assumption of general position cannot holdat all times, as it is precisely when certi�cates become degenerate (fail) that interestingthings happen with kinetic data structures. Our general position assumption therefore hasto be \one dimension higher": We will always assume that, in any scenario, two certi�cates(amongst those that we consider) cannot be degenerate at the same time.A proof scheme for an attribute A associates a set of certi�cates with each con�gu-ration in general position. The locality of the proof scheme is the worst case number ofcerti�cates any given item is involved in. When using a proof scheme for a kinetic datastructure, the motion plan update of an item can be handled with a computational costat most equal to the locality times the cost of inserting and deleting an event in the eventqueue.Operationally, in a kinetic data structure, we add a data structure to a proof, to help inthe proof update when a certi�cate fails. The responsiveness of a KDS is the worst casecomputational cost of processing one event.Example 1.3. The proof schemes for the sorted order and circular lists have locality O(1),but the one for the Delaunay triangulation [89] has locality �(n). Both schemes haveresponsiveness O(log n).The attributes that we have just seen have a very nice property: there is a (nearly)one-to-one correspondence between the combinatorial elements of the attribute and thecerti�cates needed to certify it. We call such attributes self-certifying. There are otherexamples of self-certifying structures: the vertical decomposition of a set of segments, forinstance, or their constrained Delaunay triangulation. A triangulation of a point set is also
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12 CHAPTER 1. INTRODUCTIONself-certifying, but in this latter case, we can have many triangulations, and therefore manyproofs, for a given con�guration.When considering a single scenario (�t) that is clear in the context, we will denote byS(t) the con�guration at t and by s(t) the position of item s at t. We will also often needto examine times \just before" or \just after" an event. For a given time t, we de�ne t+ tobe a time after t arbitrarily close to t, and t� to be a time before t arbitrarily close to t. Ifwe denote by K(t) the status of a kinetic data structure at time t, then processing an eventat time t means that we update the structure from K(t�) to K(t+).* * *It is now time to de�ne classes of allowable motions for analysis purposes. Let us stressthe fact that these de�nitions are not meant to restrict the use of kinetic data structures tocertain classes of motion.A (�; n)-scenario is a scenario (�t) on a set S of n items such that, for every items 2 S, the function t 7! �t(s) is a vector of polynomials in t of degree at most �, and suchthat no two certi�cates are degenerate at the same time.Sometimes, we would also like a kinetic data structure to be dynamic, i.e., we wouldlike to be able to insert and delete items dynamically from time to time. Therefore, weneed a model of motion to analyze data structures that are both kinetic and dynamic. Let�R2 = R2 [ f!g, where ! is a special symbol that signi�es that the item is \hidden". A(�; n;m)-dynamic scenario is a scenario in which the positions are in �R2 instead of R2 ,such that for each s 2 S, the function t 7! �t(s) is a polynomial of degree at most � oneach interval where it is not equal to !, and with the two additional global requirementsthat the total number of such intervals (over all items) is at most m, and that at most nitems are visible at any time. Using the vocabulary of dynamic data structures, we say talkabout deletions and insertions when items switch from \real" positions to ! and back.The e�ciency of a kinetic data structure K in a scenario is the computational cost ofprocessing this scenario. This cost includes all schedulings and deschedulings in the eventqueue, as well as any additional time needed to update the supporting structure of the KDS.In a dynamic scenario, we assume that each item knows when it is inserted and deleted, sothat it is not necessary to schedule all insertions and deletions in advance.
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1.3. THESIS OVERVIEW 13Example 1.4. The kinetic sorted list has e�ciency O(n2 log n) in a (�; n)-scenario, and ef-�ciency O(mn logn) in a (�; n;m)-dynamic scenario. The same bounds hold for a kineticdictionary, where the structure maintained also supports logarithmic-cost searches at anytime.1.3 Thesis OverviewIn this introduction, we have presented the essential idea of kinetic data structures, whichis, once again, animating proofs through time. The remainder of this thesis is devoted todemonstrating the practicality of this idea, by applying it to several fundamental prob-lems in computational geometry. The second chapter gives the required background incomputational geometry and surveys related work on motion.In the third chapter, we focus on a simple yet rich one-dimensional problem: thatof keeping track of the maximum of one-dimensional items. In the fourth chapter, weconsider two fundamental two-dimensional attributes: the convex hull and the closest pair;we provide e�cient kinetic data structures in both cases. In the �fth chapter, we partiallydescribe an implementation of the kinetic data structures presented in this thesis. In thesixth chapter, we present a probabilistic model for combinatorial problems involving motion.* * *Most of the work presented in this thesis has appeared in conference publications. Ki-netic data structures were �rst introduced at the Eighth Symposium on Discrete Algo-rithms [17], with the examples of the kinetic tournament, convex hull and closest pair. Theother solutions for the kinetic priority queue appeared at the Fourth European Symposiumon Algorithms [19] and at the Thirteenth Symposium on Computational Geometry [18].Preliminary results for the probabilistic analysis of Chapter 6 appeared in the ThirteenthSymposium on Computational Geometry [15]. The implementation chapter is based on animplementation that was the subject of a poster at the same conference [20].
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Chapter 2
Background and Related Work
The approach of a Computational Geometer who wants to compute a discrete output fromgeometric input of �nite description complexity consists of several steps:1. identify some discrete predicates, whose truth values are in general given by the signsof certain polynomials,2. show how the output depends on the truth values of these predicates only,3. exploit the constraints given by the fact that the predicates come from a certain spaceto use only a subset of the predicates de�ned.For instance, the convex hull of a �nite set of points in the plane is an in�nite set, butit has a �nite description: the counter-clockwise ordered list of vertices appearing on itsboundary. We call this the convex hull diagram. In order to compute this diagram, one�rst notices that it depends only on the predicate \r is to the left of line (pq)" for all tripletsof points of the input set. Next one avoids looking at all �n3� such predicates by exploitingthe structure of the plane, and one �nally obtains an O(n log n) algorithm to compute theconvex hull. The last phase often requires looking at the combinatorial complexity of certaingeometric arrangements.In this chapter, we review some basic material used in or related to this thesis.15
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16 CHAPTER 2. BACKGROUND AND RELATED WORK2.1 BackgroundThere are a few discrete attributes that are the object of this thesis. The convex hulldiagram and the closest pair have been introduced in the previous chapter. Both can becomputed in O(n logn) time for a set of n items positioned in the plane using a variety ofdi�erent techniques [57, 82, 83, 84]. Data structures exist to perform e�cient updates ofthese attributes upon item insertion and/or deletion [25, 29, 55, 64, 71, 81, 84].Another classical structure is the Voronoi diagram, which encodes the nearest item toeach point in the plane. The Voronoi diagram is a planar map that can also be computed inO(n log n) time [53, 93]. The geometric dual of the Voronoi diagram is called theDelaunaytriangulation and is also a planar map; it is a triangulation when the items are in generalposition.2.1.1 Plane Sweep MethodsConsider a set of line segments in the plane. How can we �nd whether there exists anintersecting pair? More generally, how can we report all intersecting pairs? These twoquestions are the simplest ones in the category of intersection problems, and were themotivation for the creation of the powerful space sweep paradigm, which is an algorithmdesign technique speci�c to Computational Geometry.The idea of a plane sweep method is to reduce the computation of a d-dimensionalarrangement of curves and surfaces to that of keeping track of a (d � 1)-dimensional ar-rangement that changes over time. Here is how this works for the original problem addressedby Bentley and Ottmann [24], which is that of reporting all pairwise intersections in a familyS of line segments in the plane. We present the plane sweep paradigm here in the vocabu-lary of kinetic data structures. Denote by s0; s1 the left and right endpoints of a segment s.We assume here that the input is non-degenerate, i.e., that no three segments intersect ata common point and that no two endpoints or intersections lie on a common vertical line.One imagines a vertical sweep line, �rst placed at the extreme left of the plane, whichwill move to the right by jumping between endpoints and intersections. This is done asfollows. At a given position x of the sweep line, there is a set of segments S` to the left ofthe sweep line, a set of segments Sr to the right of the sweep line, and a set of segments Sithat cross the sweep line. For a segment s in the last set, de�ne up(s) to be the segment
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2.1. BACKGROUND 17just above s at the current position of the sweep line. The con�guration is certi�ed by a setof comparisons: 8>>>>><>>>>>: 8s 2 S`; s1 < x8s 2 Sr; s0 > x8s 2 Si; s0 < x ^ s1 > x8s 2 Si; s < up(s)The last comparison is between the y-coordinates of the intersections of the segments withthe sweep line.Each comparison has a failure time, i.e., a position of the sweep line at which it becomesinvalid. For the left segments, this never happens. A y-coordinate comparisons fails whenthere is an intersection.The gist of the method relies on the fact that, as the sweep line moves from left to right,when a comparison fails, there is very little to do to create a new valid set of comparisonsthat certi�es the new con�guration. Hence, the algorithm works as follows: put eachcomparison in an event queue, ordered by failure time, and move the sweep line from failuretime to failure time. At each step, update the list of comparisons and the event queue.Theorem 2.1 ([24, 28]). The plane sweep method �nds all intersections between a set ofn line segments in O((n+ k) log n) time and O(n) space, where k is the number of pairwiseintersections.It is quite obvious that kinetic data structures owe a lot to plane sweep methods. Ine�ect, a kinetic data structure is nothing more than a sweep of space/time along the timedirection that keeps track of partial structures instead of a full arrangement.The plane sweep paradigm is a very general way to approach many problems in com-putational geometry. To give an idea of its generality, the convex hull diagram, the closestpair, and the Voronoi diagram can all be computed in O(n log n) time using plane sweeptechniques [53]. Edelsbrunner and Guibas [45] have replaced the straight sweep line by acurvy line in what they called a \topological sweep" of the plane.
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18 CHAPTER 2. BACKGROUND AND RELATED WORK2.1.2 Arrangements of Curves and SurfacesDe�nition 2.2. The lower envelope of a family (fi)i of functions from Rd to R is thepoint-wise minimum: F (X) = mini fi(X) :If one is interested in computing the lower envelope, one needs a combinatorial descrip-tion of it, that is, of which function realizes the minimum at which point. This is called theminimization diagram. For univariate functions, this diagram is simply a sequence offunction indices that realize the minimum from left to right. For bivariate functions, thisdiagram is a planar map made of connected regions (faces, edges, and vertices) for which theminimum is realized by a �xed set of functions. The upper envelope and maximizationdiagram can be de�ned similarly.The lower and upper envelopes are natural constructions that appear in many contexts.A point can be associated with a line by geometric duality. The dual of a convex hulldiagram is a maximization diagram. The Voronoi diagram of a set of items whose positionsare points in d dimensions is the minimization diagram of a set of paraboloids centered ateach item in d+ 1 dimensions. The quadratic term is the same for all paraboloids and canbe eliminated. Hence, the Voronoi diagram is the minimization diagram of a set of planesin d+ 1 dimensions. * * *In two dimensions, nearly exact results are known for the worst-case complexity of theminimization diagram of curves of �xed degree. Even more interestingly, the question hasbeen reduced to a completely combinatorial question, and the results hold for any familyof curves that abide by some strictly combinatorial conditions that capture all the possiblebehavior of algebraic curves.We say that a sequence of integers � = (�1; : : : ; �n) is non-repeating if �i 6= �i+1 foreach i.De�nition 2.3 ([96]). Let n; s be two positive integers. A sequence � = (�1; : : : ; �m) isan (n; s)-Davenport-Schinzel sequence if it is non-repeating and satis�es the followingconditions:
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2.1. BACKGROUND 191. 1 � �i � n for each i .2. Any non-repeating subsequence of � made of only two integers is of length at mosts+ 1.We denote by �s(n) the length of the longest (n; s)-Davenport-Schinzel sequenceTight bounds on �s(n) involve the Ackermann function. This function is de�ned bydiagonalization. First, we de�ne inductively a family (Ak)1k=1 of integer functions as:A1(n) = 2nAk(n) = A(n)k�1(1) (k � 2)where f (n) is the n-fold composition. Then we de�ne the Ackermann function A to beA(n) = An(n)The inverse of the Ackermann function, denoted �(n), appears in the bounds for �s(n). Itgrows extremely slowly (it is less than 4 for practical values of n).Theorem 2.4 ([96]).�1(n) = n�2(n) = 2n� 1�3(n) = �(n�(n))�s(n) � n2(1+o(1))�(n) s�22 if n is even,�s(n) � n2(1+o(1))�(n) s�22 log�(n) if n is oddIf (fi)ni=1 is a family of polynomials of degree at most s, then its minimization diagram,seen as the sequence of indices of the functions that realize the minimum, is a Davenport-Schinzel sequence. Indeed, any two functions of the family intersect at most s times, andtherefore, the number of times they can alternate on the upper envelope is at most s+ 1.The notion of upper envelope and maximization diagram can be generalized. If wereplace the maximum by the k-th order statistic in the de�nition of the upper envelope weobtain the k-level.
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20 CHAPTER 2. BACKGROUND AND RELATED WORKDe�nition 2.5. Given a set � of arcs in the plane, the level of a point (x; y) in � is thenumber of curves of � that intersect the relatively open vertical ray f(x; v) j v > yg .The k-level of an arrangement of arcs is the sequence of vertices that are at levelk. Levels in arrangements of lines and curves are a well-studied topic in computationalgeometry [5, 78]. Although estimating the exact number of vertices at level ` has provendi�cult, a simple bound on the number of vertices of level at most ` can be obtained usingstandard random sampling techniques [31].Theorem 2.6 ([94]). Let � be a set of n arcs in the plane such that any two arcs intersectat most � times. Denote by �` the number of vertices that have level exactly `. Then:Xi�` �i � (`+ 1)2��+2 �� n`+ 1�� :* * *We now jump one dimension higher. In this context, many results are known, althoughmost are not as tight as in the case of curves.Theorem 2.7 ([95]). The maximization diagram of a family of n algebraic surfaces of�xed degree has complexity O�n2+�� for any � > 0.The overlay of two planar maps is the planar map de�ned as follows: there is a facef in the overlay if there are two faces in the original maps whose intersection if f . If theoriginal maps have total complexity m and each pair of edges has a constant number ofintersections, then the overlay has complexity ��m2� in the worst case. We just saw that amaximization diagram is roughly of quadratic complexity in the worst case (Theorem 2.7).What about the overlay of two maximization diagrams?Theorem 2.8 ([8]). Let F;G be two families of bivariate algebraic functions. The overlayof their maximization diagrams has complexity O�n2+�� for any � > 0.This combinatorial result gives a very simple and nearly optimal O(n2+�) divide-and-conquer algorithm for computing the upper envelope of a set of surfaces. Once two max-imization diagrams have been computed in the divide step, they can be merged using aplane sweep method very similar to the one described in Section 2.1.1 [8].
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2.1. BACKGROUND 21Davenport-Schinzel sequences were �rst introduced by Davenport and Schinzel [34], andrediscovered in computational geometry by Atallah [14]. Many problems can be reduced tocombinatorial questions about arrangements [62].2.1.3 Probabilistic Analysis for Geometric StructuresIn discrete algorithms, average case calculations on the performance of algorithms wereroutinely done until the seventies, in particular for Quicksort [66]. Nowadays, they areunfashionable, and there is a good reason for this. Consider the case of a sorting algo-rithm. A reasonable algorithm on a reasonable input distribution of n numbers runs in�(n logn) time. However, there are algorithms that run in this amount of time in the worstcase. And �nally, the average case can often be transformed into a worst case by use ofrandomization [76]. Hence, the average case is completely subsumed by other measures.This is not the case in computational geometry. Consider, for instance, the convex hulldiagram of a set of n items with positions in a d-dimensional vector space. In the worstcase, its combinatorial complexity can be as much as ��nb d2c� [74, 92], and take that muchtime to compute. However, if the positions are independently uniformly distributed in aconvex polytope, the expected asymptotic complexity of their convex hull diagram is only��logd�1 n� [23]. Moreover it can be computed in linear expected time [22].It is somewhat surprising to learn that one gets very di�erent answers depending onthe input distribution. If the items' positions are drawn independently uniformly at ran-dom from a unit d-dimensional ball, the convex hull diagram has expected complexity��n d�1d+1� [42]. Some papers have addressed these questions for more general sphericallysymmetric distributions [42, 49, 86], some for a uniform distribution in a convex poly-tope [1, 40]. A good summary can be found in [41] to complement this partial list ofreferences.Although the Voronoi diagram in d dimensions is the dual of a convex hull in onedimension higher, this doesn't help in the probabilistic model. Dwyer [43] shows that theVoronoi diagram of n items whose positions are independently and uniformly distributed inthe unit d-dimensional ball has linear complexity and can be computed in linear expectedtime. In contrast with the convex hull diagram, this result seems to be very robust acrossdistributions.
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22 CHAPTER 2. BACKGROUND AND RELATED WORKIn general, one would like to design algorithms that are both optimal in the worst caseand in the average case.For the closest pair in the static case, the description complexity is of no interest, butEfron computes the distribution of the closest distance:Theorem 2.9 ([49]). Let S be a set of n independent, identically distributed random vari-ables in d-dimensional Euclidian space, whose common distribution is given by a boundeddensity function f with respect to the Lebesgue measure. Let MS = minfkx � yk j x; y 2S; x 6= yg. Then: limn!1(MS > r) = exp[�cfn2rd]where cf = �d=22�(12d+ 1) ZRd f2(x)dxis minimized for the uniform distribution. * * *R�enyi and Sulanke [87] initiated the study of the average complexity of geometric struc-tures. We briey recall their approach to compute the expected complexity of the convexhull of n items with positions independently and uniformly distributed in the unit square.The idea is to consider a given pair of items p; q, and to compute the probability that thispair forms an edge of the convex hull diagram, i.e., that all other items r1; � � � ; rn�2 are tothe left of the oriented line passing through (p; q) and denoted pq.Pr[(p; q) on convex hull] = Pr[8i; ri left of pq]= E[Pr[8i; ri left of pq j p; q]]= E "Yi Pr[ri left of pq j p; q]#= E �(1�A(pq))n�2�where, for convenience of notation, p denotes the random position of item p, and whereA(pq) is the area of the piece of the square to the left of the oriented line pq, which is
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2.1. BACKGROUND 23de�ned almost surely. The crucial step is from line 2 to line 3: the events [ri left of pq] arenot independent, but they are independent conditionally on p; q.To compute the distribution of A(p; q), one introduces a map � that gives the positionsof p and q from the parameters of the line ` they de�ne and their abscissae sp; sq on thisline. The change of variable formula cited below (Theorem 2.10) gives:Pr[(p; q) on convex hull] = Z (1�A(`))n�2jJ�(`; sp; sq)j d` dsp dsqwhere A(`) is the area of the square to the left of `, J� is the Jacobian of �, and theintegration is taken over the space of parameters such that p and q fall in the unit square.It is then necessary to carefully bound the Jacobian to �nish the computation.Let us recall the change of variable formula. (See, e.g., Billingsley [26], Theorem 17.2.):Theorem 2.10. Let � : V 7! �V be a one-to-one mapping of an open set V onto an openset �V . Suppose that � has continuous partial derivatives �ij. ThenZV f(�(x))jJ�(x)j dx = Z�V f(y) dywhere J�(x) is the Jacobian of � at x, i.e., the determinant of the matrix of �rst derivatives(�i;j)i;j.2.1.4 Combinatorial Aspects of MotionSo far, we have looked at discrete attributes of �xed sets of points in the plane. The closestpair is such an attribute. Let's now consider what happens if the points start moving. Asin the introduction, we imagine that we have a set of n items, each of which has a positioncontinuously dependent on time. In this setting, although the distance between the closestpair varies continuously, the pair of items that realizes this distance changes only at speci�ctimes. Such a change is called an event for the closest pair.Let us now assume that each item moves at constant velocity: item i has position pi+tviat time t (where pi; vi are �xed two-dimensional vectors). How many events can there bebetween time 0 and +1? Can there be in�nitely many?If we plot the distances between each pair of items as a function of time, we obtain a setof �n2� curves, and the closest pair at time t is the pair that corresponds to the lowest curve.
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24 CHAPTER 2. BACKGROUND AND RELATED WORKA change of the closest pair is then precisely a vertex in the minimization diagram of thesecurves. Hence, the combinatorial results on arrangements of curves can be directly applied.Here, each pair of curves can intersect at most twice (this is easily seen by taking thesquares of the distances instead of the distances), and the minimization diagram thereforehas O(n2) vertices by Theorem 2.4. Moreover, it is easy to construct an example in whichthis bound is attained.This type of questions was �rst examined by Atallah [14], who drew the connection withcombinatorial questions about arrangements of curves, and introduced Davenport-Schinzelsequences to the computational geometry community. We use here the vocabulary that wasde�ned in the introduction.Theorem 2.11 ([14]). In the plane, the closest pair changes O(n�2�(n)) times in a (�; n)-scenario. There is a (1; n)-scenario in which the closest pair changes 
(n2) times.The same question can be asked for any discrete attribute. For instance, how manyevents can there be for the convex hull diagram of n items in �-motion? Once again, aDavenport-Schinzel argument can be applied.Theorem 2.12 ([6, 14]). In the plane, the convex hull diagram changes O(n�2�(n)) timesin a (�; n)-scenario. There is a (1; n)-scenario in which it changes 
(n2) times.The Delaunay triangulation contains the convex hull as a substructure, and hence thesame lower bound applies, but the best known upper bound is roughly cubic.For the purpose of this thesis, it is important to know the above bounds. When weconstruct a kinetic data structure that keeps track of a given �xed attribute, we will besatis�ed if the worst-case number of events for this structure is not too much larger thanthe worst-case number of events for the attribute it maintains. Our methods of analysis arealso often similar to those that were used to prove the theorems in this section: we identifyeach event with a vertex in a certain arrangement in space/time, and use theorems likethose of Section 2.1.2 to bound the number of such vertices.2.2 Related Work on MotionSince the pioneering work of Atallah [13], many results have been obtained on the com-binatorial number of changes to attributes based on moving data. This type of study is
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2.2. RELATED WORK ON MOTION 25typically called \dynamic computational geometry".Voronoi diagrams of moving points have raised considerable interest in the past fewyears. Several papers simultaneously gave bounds better by one order of magnitude thanthe na��ve bounds [54, 58, 69, 88]. Similar bounds have also been obtained in higher di-mensions [90, 11]. The Voronoi diagram can be de�ned for any metric, and Chew [30]gave roughly quadratic bounds for the number of changes of the L1-Voronoi diagram in a(�; n)-scenario.Edelsbrunner and Welzl [48] ask for a bound on the number of changes to the k-thorder statistic of a set of items with changing one-dimensional position. This is exactly thek-level of the curves described by the items in space/time. Recently, Dey [37] showed thatthe k-level of a set of lines has complexity at most O�nk1=3�.If we are given a �xed graph with edge weights varying continuously with time, we canask how many times the structure of the minimum spanning tree changes. Gus�eld [61], ina paper that predates the work of Atallah, shows that if the edge weights are changing atconstant speed, the minimum spanning tree changes O(mpn) for a graph with n verticesand m edges, but these bounds are not tight. This question is intimately related to the k-level, and Dey's bound applies here also: The new bound is O�mn1=3�. If items are movingin the plane, the minimum spanning tree can be de�ned with respect to any metric. Katoh,Tokuyama, and Imano [72] showed that in a (1; n)-scenario (items moving at constantvelocity), the L1-minimum spanning tree changes at most O(n5=2�(n)). In the L2 metric,the bound is only O�n2�4(n)�. The maximum spanning tree, on the other hand, changesO(n2) times, and this is tight. * * *Atallah [14] also considers some algorithmic problems associated with motion, but hissolutions are essentially o�-line. For instance, he shows how to compute all the changes tothe convex hull diagram of a set of items for which the motion is known in advance. It isthe distinction between o�-line and on-line that characterizes best the di�erence betweenthese questions and kinetic data structures.Ottmann and Wood [80], in a paper that bears a name very similar to that of Atallah,also consider some algorithmic problems involving motion. They ask how to compute the
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26 CHAPTER 2. BACKGROUND AND RELATED WORK�rst collision time in a set of moving items. They provide a plane-sweep solution for one-dimensional data (this amounts to �nding the leftmost intersection of a set of lines).Edelsbrunner and Welzl [48] motivate their interest in the k-level by asking how tocompute the k-th order statistic of points moving along a line. Their method to computethe k-level is the �rst non-trivial on-line method for maintaining a discrete attribute ofmoving data, although it works only for constant velocity motion. It is generalized toarbitrary motion in [19].Roos [88] shows how to keep track of the Voronoi diagram of moving points. The schemeis exactly the same as that of a kinetic data structure, except that, in the case of the Voronoidiagram, there are no issues of design as the structure is \self-certifying" (except that thestructure is not local). Devillers and Golin [36] make the observation that the previousalgorithm can also be used to maintain a point location structure on the changing Voronoidiagram, using the dynamic point location structure of Goodrich and Tamassia [56].* * *Kahan [70] proposes a computational model for continuously moving data, with a radi-cally di�erent assumption from ours. In many situations, he argues, only an upper boundon the speed of the objects is known, and it is necessary to perform some costly operation(like reading o� a radar) to know the precise position of an object. He imagines that auser is going to perform a set of queries at di�erent times, and that an algorithm, in hismodel, will have to request the exact position of a number of items in order to answer thequery exactly. The performance of an algorithm is measured by comparing the number ofposition requests to the minimum number required to answer a query sequence. Hence, thismeasure is akin to the competitive ratio used in the evaluation of on-line algorithms. In thismodel, Kahan exhibits an algorithm for answering maximum queries that needs to performonly one more position request than the minimum required to certify that the queries arecorrect. No result is known for attributes based on data in dimension higher than one.* * *A number of works have focused on using elaborate range searching data structures to�nd the �rst collision time between a set of objects in the plane or in space, moving with
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2.2. RELATED WORK ON MOTION 27known motion laws. The goal here is to beat the trivial quadratic bounds obtained bycomputing the collision time of every pair of objects or features.Here are some results obtained with this type of approach: Gupta, Janardan andSmid [60] �nd the �rst collision time of n points each moving at constant velocity in theplane, with a computational cost of O�n5=3(log n)6=5�. Sch�omer and Thiel [91] answer thesame question for two polyhedra translating in space with a computational cost of O(n8=5+�).Erickson and Eppstein [50] consider repeated collision detection amongst a set of unit diskseach moving at constant velocity. They create a dynamic data structure such that, after acollision, they can update the structure in order to �nd the next collision. The constructionof the data structure on n disks takes O(n49=29), and provides O(n20=29) time for query andupdate.All these solutions are interesting from a theoretical point of view, but are unlikely tobe implementable. Moreover, they are restricted to simple classes of motion. They may,however, provide some useful guidelines for the design of practical heuristics in implemen-tations. * * *The idea of kinetic data structures is likely to �nd applications for collision detection indynamic simulation systems. There are a number of results in the computational geometrycommunity about the static problem of deciding whether there are collisions amongst aset of objects: for an arbitrary number of spheres in three dimensions [67], for two convexpolyhedra with preprocessing [38], or for simple polygons with preprocessing [77].In the context of objects in motion, collision detection tests can be performed at everytime step, but the temporal coherence between each step means that it is wasteful to restarteach test from scratch. Many systems take advantage of this coherence by using computa-tions done at the previous step to speed up the computation at the new step. For instance,Lin and Canny [73], in their algorithm that �nds the closest pair of features between twoconvex polyhedra, initialize the initial guess to the closest pair found at the previous timestep. The number of papers that deal with collision detection is too large to review here,but the reader is referred to Hubbard [68] for a good discussion of the issues involved inthe possible uses of temporal coherence, and to Hayward et al. [63] for a recent literaturereview of existing approaches.
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Chapter 3
Maximum Maintenance
In this chapter, we focus on the simplest attribute of a set of real numbers: the maximum.The maximum is a sub-attribute of the sorted list, so that a kinetic sorted list is a possibleway to maintain the maximum. However, this solution has a drawback: as we saw inTheorem 2.4, the maximum of a set of n items can change at most ��(n) times in a (�; n)-scenario, a quantity that is nearly linear in n. The kinetic sorted list, on the other hand,needs to process quadratically many events in the worst case. The purpose of this chapteris to seek better solutions, in terms of e�ciency, to the problem of maximum maintenance.A kinetic data structure that maintains the maximum will be called a kinetic priorityqueue.There are numerous algorithms to compute the maximum, and many data structuresto maintain it upon insertion and deletion. All of them can be considered for kinetization.For instance, we can compute the maximum by organizing a tournament tree: the itemsare divided into two sets of roughly equal size, the maximum of each subset is recursivelycomputed, and the two maxima are compared to get the winner. A classical data structurethat maintains the maximum is a binary heap: a binary tree in which each node stores adistinct item, such that the item stored at a node is greater than any item stored in itssubtree. The proof scheme induced by a tournament contains one certi�cate per internalnode; it is of linear size and has O(log n) locality. The proof scheme induced by a binary heapcontains one certi�cate per edge; it is also of linear size and has O(1) locality. Figure 3.1shows examples of both proof schemes. In the remainder of this chapter, we present di�erentupdate rules for these proof schemes, and compute e�ciency bounds for each of them.29
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30 CHAPTER 3. MAXIMUM MAINTENANCE
[d<b]
[b<a]
[c<a]

[b<a]
[d<c]
[c<a]Figure 3.1: Two ways to certify the maximum item in a con�guration in which d < c <b < a. The left structure is a binary heap. There is one certi�cate per edge, comparingthe parent and the child. The right structure is a tournament. There is one certi�cate perinternal node, comparing the two children.

Figure 3.2: At time t = 1 items b and e are not in the same subtree, hence their intersectionis not scheduled as an event. The �rst intersection to be scheduled is bd. At this point,the heap property is maintained by a swap between b and d. The events corresponding tothe four edges around this pair are descheduled before the swap and rescheduled with thechanged items after the swap.3.1 Kinetic Swapping HeapWe consider here a binary heap. The simplest way to restore the heap property after thefailure of an edge certi�cate is to swap the parent and child of the failing edge (Figure 3.2).We call this a kinetic swapping heap. The responsiveness of this update rule is O(log n):A swap changes at most four certi�cates (the edge above the parent and the two childrenof the child), and each of these changes takes O(logn) to deschedule and reschedule in theevent queue.One particularity of this method|compared to all other kinetic data structures pre-sented in this thesis|is its path dependence: the structure of the binary heap at a giventime depends not only on the values of the keys at that time, but also on the speci�c history
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3.1. KINETIC SWAPPING HEAP 31
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Figure 3.3: Two scenarios in which we start and end with the same con�guration, and startwith the same heap. The structure of the heap at the end depends upon the full scenarioand not only upon the end con�guration.of intersections before that time (Figure 3.3). This particularity may be the reason why thekinetic swapping heap is extremely di�cult to analyze. As a matter of fact, we obtainedonly partial and unsatisfactory results on the e�ciency of this method. We show that foritems moving at constant velocity, the e�ciency is O�n log3 n�, one log short of the lowerbound. In a (1; n;m)-dynamic scenario the best bound we obtain is O�mpn log 32 n�. Noresult is known for non-linear motion. * * *We now consider a kinetic swapping heap in a (1; n)-scenario starting at time 0. Thetree structure underlying the heap remains �xed during the sweep, even though the nodecontents change over time. The level of an item a at time t, denoted by `t(a), is the distancefrom the node containing a at t to the bottom level. As the tree structure of the heap isbalanced, the level of an item is an integer between 0 and dlg ne. We denote by ^̀t(a) thehighest level ever attained in the heap by item a between time 0 and t.Lemma 3.1. Let K be a kinetic swapping heap in a (1; n)-scenario. If [a > b] is a certi�catein K(t) that fails after time t, then ^̀t(a) � ^̀t(b) + 1.Proof. Consider the last time �� before t when b is at its maximum level ^̀t(b). At time
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32 CHAPTER 3. MAXIMUM MAINTENANCE��, item b is in some node � of the heap and from then on, item b only moves within thesubtree U rooted at �.If b is in � at t, then a is in the parent of � at that time, and the claim trivially holds.Otherwise, as [a > b] fails at a time later than t and can only fail once (because itemshave constant velocities), we have b(��) < a(��), and item a is not in U at � . Therefore,the path followed by a in the heap from �� to t enters U at some time before t, and thuspasses through the parent of �. The conclusion follows.Theorem 3.2. A kinetic swapping heap has O�n log3 n� e�ciency in a (1; n)-scenario.Proof. We use a potential function argument. For an item a in the heap, de�ne its potential�t(a) at time t to be �t(a) = ^̀t(a)(`t(a)� ^̀t(a)) :The potential of the entire heap is the sum of the potentials of all the items. Note thatthis potential is 0 at time 0 (for every a, `0(a) = ^̀0(a)); it is non-positive for all t (because`t(a) � ^̀t(a)). At the end of the scenario, its absolute value is at most O�n log2 n�. Wenow show that an event decreases the total potential by at least 1.Consider a swap at time t between a parent a and a child b in the heap. The potentialof any item other than a or b doesn't change. Also, the quantity ^̀t�(a) doesn't change, sothat the potential change for a is �t+(a)� �t�(a) = �^̀t�(a).There are two cases for b: either it reaches a new highest level at t+ (i.e. `t�(b) = ^̀t�(b)),or it does not. In the �rst case, ^̀t+(b) = `t+(b), so �t�(b) = �t+(b) = 0, and b's potentialdoesn't change. The decrease in potential is therefore ^̀t�(a), which is at least 1 because ais not on the bottom level before the swap.In the second case, the potential of b increases by ^̀t�(b), and the net potential changeis ^̀t�(b)� ^̀t�(a), which corresponds to a decrease of at least 1 by Lemma 3.1.Hence, the number of events is O�n log2 n�, the absolute value of the potential at theend of the scenario. An additional log comes from the insertions and deletions in the eventqueue. * * *
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3.1. KINETIC SWAPPING HEAP 33Alas, this analysis completely breaks down in the case of line segments, as Lemma 3.1no longer holds. Instead, we use another potential argument reminiscent of the one usedindependently by several authors [47, 51, 61] for proving upper bounds on the k-level of anarrangement of lines.Lemma 3.3. The kinetic swapping heap has O�mpn log 32 n� e�ciency in a (1; n;m)-dynamic scenario.
Proof. Let us �rst assume that we have only n insertions/deletions, but that we may startwith a non-empty heap (with at most n items), and end with a non-empty heap. Let usorder these (at most 2n) items by increasing (signed) velocity, and denote by r(a) the rankof an item a in this ordering. Let H(�) be the subtree rooted at a node �, and let rt(�) bethe rank of the segment in node � at time t.For a node � in the heap, de�ne its potential �t(�) at time t to be the sum of the ranksin its subtree: �t(�) = X�2H(�) rt(�) :The potential of the entire heap is the sum of the potentials of all the nodes of the heap.As each item's rank is counted in at most log n potentials, the initial potential is at most2n2 logn.If two nodes �; � are parent and child, a swap of their contents at t changes the potentialby rt�(�)�rt�(�), which is at most n. In a binary heap, an insertion is implemented by theaddition of a leaf at the bottom of the heap, followed by O(log n) swaps. The insertion atthe bottom of the heap also increases the potential by O(n log n) and each swap increasesthe potential by at most O(n). Hence, an insertion increases the potential by at most2n log n, and the same bound holds for deletions. The total potential increase due toinsertion/deletions is O�n2 log n�.Let R be the set of swap events. At an event, the potential can only decrease, as it isthe higher ranked item (the one with greater velocity) that goes up one level in the heap.Hence, if we denote by �(e) the absolute di�erence in rank between the two items that
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34 CHAPTER 3. MAXIMUM MAINTENANCEexchange position ordering at an event denoted by e, we have:Xe2R �(e) = O�n2 log n� :Therefore, for any �xed B, the number of events e 2 R with �(e) � B is O�n2 log nB �.Moreover, each item has at most B items that di�er in rank by less than B, so there areat most nB events with �(e) � B. Choosing appropriately B = pn logn, the number ofevents is O�npn logn�.If we have m insertions/deletions, we batch them as m=n groups of n, to which we applythe argument above. The total number of events is therefore O�mpn logn�, and an extralog comes from the cost of scheduling and descheduling events in the event queue.Both arguments extend to motions whose trajectories in time/space create an arrange-ment of pseudo-lines or pseudo-segments (see [2]).3.2 Kinetic HeaterIf each item in a set is given two numbers, a key and a priority, there is a unique binarytree that is both a search tree on the keys and a heap on the priorities (the tree is notnecessarily balanced). Such a tree is well-known and called a treap|Aragon and Seidel [12]used it to create their popular randomized search tree data structure, which is a treap onitems with a given key and a randomly assigned priority. The randomization guaranteesthat this structure is balanced with high probability.Let's turn things around, and de�ne a heater : a heater is like a treap, but this time,priorities are given and keys are random. When an element with a given priority is insertedin a heater, it is �rst assigned a random key, and inserted at the appropriate leaf of theheater. It then bubbles up with a sequence of rotations until it reaches a position consistentwith its priority. Deletions are implemented in an analogous way. The structure of a heateris the same as that of a binary heap, although it might not be balanced. It is certi�ed byone certi�cate per edge.In a scenario in which the priorities change continuously, the heater needs to be updatedfrom time to time and becomes a kinetic heater. This is where it di�ers from the kinetic
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3.2. KINETIC HEATER 35

Figure 3.4: Three times and the corresponding heaters with attention focused on items withrandom keys a through f (which we don't distinguish from the items' names). Betweentime 1 and time 2, the heater remains unchanged although there is a change in the orderof the priorities of b and e. Between time 2 and time 3, a rotation is performed that swapsthe priorities of b and d but otherwise preserves the in-order sequence of the items' keys.swapping heap. When the priorities of a parent and a child become equal, we do notswap their contents. Instead, we perform a rotation along the edge that links them. Thisoperation preserves the key order and adjusts the heater to the new priorities. After therotation, two parent-child relationships change in the heater. Thus up to two existingevents in the event queue may have to be descheduled, and two new events scheduled. SeeFigure 3.4. The responsiveness of a kinetic heater is O(logn), as is the case for the kineticswapping heap.We consider a heater H in a (�; n;m)-dynamic scenario for a set S of m items; eachitem is assigned a random key. We recall that the heater structure is at the same timea heap on the position of each item, and a search tree on random keys assigned to eachitem. Expectations are taken over a uniform distribution of all m! ordering of the keys.The good behavior of a heater relies on two facts that we proceed to prove: (i) its depthat time t is logarithmic in expectation, which allows e�cient insertion/deletion of elements(Lemma 3.4), and (ii) there are not too many events (Lemma 3.7).Lemma 3.4. The expected depth of a kinetic heater on n items at a given time is O(logn).Proof. The random keys de�ne a bijection between the ordering of the priorities and theordering of the keys. This bijection is drawn uniformly at random from the space of alln! bijections. Thus, the structure of the tree is the same as if the keys were given andthe priorities were random. Seen this way, the result is an immediate consequence of theoriginal analysis of treaps by Aragon and Seidel [12].
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36 CHAPTER 3. MAXIMUM MAINTENANCECorollary 3.5. The expected cost of all insertions and deletions in a kinetic heater in a(�; n;m)-dynamic scenario is O�m log2 n�.Proof. By the lemma above, an insertion of an element in the heater causes an expectedO(log n) rotations. Each rotation disturbs O(1) parental relationships, and requires O(1)updates of the event queue. The expected time of an insertion/deletion is thus O�log2 n�.The rest of this section focuses on bounding the expected number of internal heaterupdates. It makes crucial use of the randomness of the structure. The analysis proceedsas follows. Given a dynamic scenario on a set S of items, we construct an arrangement ofarcs � in two-dimensional space-time, by associating to each item its trajectory. An eventin the kinetic heater corresponds to a vertex in �, but not all vertices are events. We thenobserve that the probability that a given intersection causes an update in the heater isrelated only to its level (De�nition 2.5). Finally, we perform a standard computation �a laClarkson-Shor [31], based on the combinatorial result bounding the complexity of the upperenvelope of a set of curves (Section 2.1.2).Lemma 3.6. Let � be the arrangement of arcs associated with a dynamic scenario, and letv be a vertex in � at level `. The probability that v corresponds to an event for a kineticheater is exactly 2`+2 .Proof. Let a; b; t denote the two items and time that correspond to vertex v, that is, wehave b(t) = a(t). Without loss of generality, let's assume that b(t�) < a(t�). We considerthe set S0 made of a; b, and the ` items whose priorities are greater than that of a and b att. The set S0 forms a contiguous group at the top of the heater, as all other items have alower priority at that time. We restrict our attention to the pruned tree on S0, as well asto the induced random ranking � amongst the keys of those items.The certi�cate [b < a] exists at time t� if and only if a is the parent of b. Item b haslowest priority in S0, so it is a leaf of the subtree. Moreover, a has lowest priority amongstthe remaining items, so it is either a leaf of the subtree, or the parent of b. In the latter case,a and b are contiguous in �. In the former case, their common ancestor has an intermediatekey, so that a and b are not contiguous in �. Hence, the certi�cate exists at time t� if andonly if j�(b)� �(a)j = 1
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3.2. KINETIC HEATER 37Now, the permutation � is a uniform random variable on all permutations of ` + 2elements. Hence:P [j�(b)� �(a)j = 1] = P [�(b) = �(a) + 1] + P [�(b) = �(a)� 1]= 2�1� 1`+ 2� 1`+ 1Thus the probability that a; b are contiguous is 2=(` + 2).Lemma 3.7. The kinetic heater has expected e�ciency O���+2(m) log2 n� in a (�; n;m)-dynamic scenario.Proof. Let us denote by �` the number of vertices at level ` in the arrangement of arcs �induced by the scenario. By linearity of expectation and Lemma 3.6, the expected numberof events is: n�2X̀=0 �` 2`+ 2 :Using summation by parts, we replace �` in this expression by its partial sumK` =Pi�` �i.The bound of Theorem 2.6 implies the (very slightly) weaker bound:K` = O((`+ 1)��+2(m)) :A standard calculation gives:n�2X̀=0 �` 2`+ 2 = 2 K``+ 2 ����n�10 � 2 n�2X̀=0 K`+1 �1(`+ 2)(`+ 3)� O(��+2(m)) + 2 n�2X̀=0 ��+2(m)(`+ 3)= O(��+2(m) log n) :A certi�cate failure is implemented by a single rotation, which disturbs the parental rela-tionship of O(1) nodes, and each of those takes O(logn) time for scheduling the associatedfailure time. The total expected processing cost is O���+2(m) log2 n�. By Corollary 3.5,the additional expected cost of the 2m insertions/deletions is O�m log2 n�.
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38 CHAPTER 3. MAXIMUM MAINTENANCE3.3 Kinetic TournamentWe now turn to a deterministic structure that realizes the same e�ciency bounds (with amuch simpler proof). It is based on the kinetization of a tournament tree (Figure 3.1).A tournament tree on a set of n values is a balanced tree. Each leaf is one of the valuesor a special symbol �1 (de�ned to be less than any other value), and each node is �lledfrom the bottom up with the higher value of the two children. The certi�cates are not thesame as those used to certify a heap: for each internal node, a comparison between the twochildren certi�es which one is the winner.When an item becomes invisible, we replace it with �1. When an item becomes visible,we put it in the �rst available leaf containing �1. If no such leaf is available, we extendthe tournament tree by adding a leaf and up to dlog ne internal nodes to connect this leafwith the rest of the tree.When an event happens at an internal node of the tree, the winner at that node changes,and the new winner has to be percolated up the tree. Similar percolations need to happenwhen an item becomes visible or invisible. Thus, unlike in the heater case, tournamentevents can cause a number of deschedulings and reschedulings proportional to the height ofthe tournament tree. The responsiveness of this structure is O�log2 n�.Lemma 3.8. The kinetic tournament has O���+2(m) log2 n� e�ciency in a (�; n;m)-dynamicscenario.Proof. When we process an event, the number of certi�cates we have to schedule anddeschedule in the event queue is proportional to the number of nodes whose contents changeduring the processing.Consider a node � in the tournament tree and denote by n� the number of items that everappear in the subtree rooted at �. Its content|the maximum item in the subtree|changesat most ��+2(n�) times.If Li denotes the set of nodes at level i, we haveX�2Li n� � m:
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3.4. CONCLUSION 39Therefore, the total number of changes at level i is at mostX�2Li ��+2(n�) � ��+2(m) :Summing over the whole tournament tree of depth log n, the total number of changes isO(��+2(m) log n). Hence, the e�ciency is O���+2(m) log2 n�Thus, although the kinetic tournament is not as responsive as our two other kineticpriority queues, it is as e�cient as a kinetic heater, and is deterministic. The only possibleweakness of this structure is that its locality is not optimal.3.4 ConclusionWe presented several solutions for the kinetic priority queue. Although the kinetic tourna-ment is close to optimal, it doesn't achieve optimal locality or responsiveness. It would benice to obtain an update rule for a deterministic binary heap, with optimal locality, whichwould allow us to prove strong bounds similar to those obtained for the kinetic tournament.On the other hand, the kinetic tournament seems more natural to implement on a parallelarchitecture.The kinetic priority queue is useful to perform a plane sweep in a case in which it is notnecessary to keep track of the exact structure of the sweep line. For instance, we used it toobtain an output-sensitive algorithm that reports all red-blue intersections between two setsof connected line segments, and another one that computes the k-level of an arrangementof curves [19].
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Chapter 4
Two-Dimensional Problems
In this chapter, we design kinetic data structures for two fundamental two-dimensionalproblems: the convex hull and the closest pair. These two problems give representativeexamples of the kinetization process. The structure for the convex hull (Section 4.1) isbased on a classic divide-and-conquer algorithm, but the proof of e�ciency calls upon somedeep theorems of combinatorial geometry. For the closest pair (Section 4.2), we need todevelop a new static algorithm, as existing algorithms do not kinetize well.4.1 Convex hullAs we have seen in the introduction, it is possible to obtain a proof scheme for an attributefrom a static algorithm that computes this attribute. One way to compute the convex hullis to use a divide and conquer strategy: we arbitrarily divide our set of items into twosubsets, recursively compute the convex hulls of each of them, and merge the result. Thismerging step is accomplished by walking around the two hulls with parallel tangents, a stepwe will describe in the dual setting.We focus here on computing the upper convex hull, and dualize a point (p; q) to theline y = px + q. In the dual, the goal is to maintain the upper envelope of a family oflines whose parameters change in a continuous, predictable fashion. We will perform thekinetization of a divide-and-conquer algorithm: we divide the set of n items into two subsetsof roughly equal size, compute their upper envelopes recursively, and then merge the two41
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42 CHAPTER 4. TWO-DIMENSIONAL PROBLEMSenvelopes. To focus on the merge step, we �rst study how to maintain the upper envelopeof two convex piecewise linear univariate functions.4.1.1 Proof Scheme for the Upper Envelope of Two ChainsWe represent a convex piecewise linear function by a doubly linked list of edges and verticesordered from left to right, and we call this representation a chain. In this section, weconsider two chains|a red and a blue|and present a KDS to maintain the purple chainthat represents the upper envelope of the two input chains.As the supporting lines are the primary objects in our problem, we denote by a lowercaseletter an edge or its supporting line, and by ab the vertex between edges a and b. Acon�guration is a placement of all the edges/vertices that makes both chains convex. Fora vertex ab, the edge from the other chain that is above or below ab is called the contenderedge of ab and denoted ce(ab); we add to each vertex a pointer to its contender edge. Wedenote by �(� � � ) the color (red or blue) of an input vertex or edge. Finally, we denote byab:prev (resp. ab:next) the red or blue vertex closest to ab on its left (resp. right). This iseasily found by comparing the x-coordinate of the neighbor vertex in the chain to which abbelongs with that of one of the endpoints of the contender edge of ab.The comparisons done by a standard sweep for merging the red and blue chains lead tocerti�cates of two types: x-certi�cates proving the horizontal ordering of vertices, denotedby <x, and y-certi�cates proving the vertical position of a vertex with respect its contenderedge, denoted by <y. Unfortunately, if we were to keep all these comparisons as certi�cates,the kinetic data structure thus obtained would not be local, as a given edge could be thecontender of linearly many vertices from the other envelope. We thus build an alternativelist of certi�cates that also involves comparisons between line slopes, denoted by <s.Table 4.1 gives this modi�ed list of certi�cates (See also Figure 4.1). The �rst columncontains the name of a certi�cate, the second column contains the comparison that thiscerti�cate guarantees, and the third column contains additional conditions for this certi�cateto be present in the KDS. For instance, the �rst line in the table says that there is acerti�cate called x[ab; cd] in the KDS only when ab and cd are neighbors and are of di�erentcolors (the condition). In this case, the comparison certi�es the local x-ordering. Theequation associated with this comparison has to be solved for t in order to �nd the �rsttime at which the certi�cate fails.
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4.1. CONVEX HULL 43Name Comparison Condition(s)x[ab] [ab <x cd] cd = ab:next�(ab) 6= �(cd)yli[ab] [ab <y or >y ce(ab)] b \ ce(ab) 6= ;yri[ab] [ab <y or >y ce(ab)] a \ ce(ab) 6= ;yt[ab] [ce(ab) <y ab] a <s ce(ab) <s bslt[ab] [a <s ce(ab)] ce(ab) <y absrt[ab] [ce(ab) <s b]sl[ab] [b <s ce(ab)] b <s ce(ab)ab <y ce(ab)�(ab) 6= �(ab:next)sr[ab] [ce(ab) <s a] ce(ab) <s aab <y ce(ab)�(ab) 6= �(ab:prev)Table 4.1: Certi�cates for the upper envelope of two convex chainsThe certi�cates have the following meaning: (1) The exact x-ordering of vertices isrecorded with x[� � � ] certi�cates. (2) Each intersection is surrounded by yli[� � � ] and yri[� � � ]certi�cates (\y left/right intersection"). (3) If an edge is not part of the upper envelope,the certi�cates place its slope in the sequence of slopes of the edges covering it: eitherthree \tangent" certi�cates (yt[� � � ]; slt[� � � ]; srt[� � � ]), or one certi�cate proving there isno tangent (sl[� � � ] or its symmetric sr[� � � ]). Illustrations of the certi�cates appear inFigure 4.1. To be complete, we need to add slope certi�cates between the two leftmostedges and between the two rightmost edges.Lemma 4.1. The locality of the proof scheme above is O(1).Proof. Consider a given edge a. It can be involved in a certi�cate because one of itsendpoints is. But each vertex can be involved in only two x[� � � ] certi�cates, and one ofevery other type. We therefore only need to consider the number of certi�cates a is involvedin as a contender edge.If a is cut by the other convex chain, it can be involved in yli[� � � ] and yri[� � � ] cer-ti�cates as the contender edge, and there can be at most two such occurrences as a isintersected at most twice by the other convex chain.Next, if a doesn't intersect with the other convex chain, it can be involved in at most
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44 CHAPTER 4. TWO-DIMENSIONAL PROBLEMS
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Figure 4.1: Depending on the relative positions of the red and blue convex chains, di�erentcerti�cates are used to certify the intersection structure (top left case) or the absence ofintersection (top right and bottom cases). Arrows point to the elements being compared(vertices or edges).two triplets of tangent certi�cates if it is above the other convex chain, and one if it isbelow.Finally, suppose that a is the contender edge of many vertices. These vertices are all ofthe same color. Thus, only the leftmost and rightmost can involve a as the contender edgein a sl[� � � ] or sr[� � � ] certi�cates. Hence the locality of the proof scheme is O(1).Lemma 4.2. The set of certi�cates described above strongly certi�es the upper envelope.Proof. Let � be a con�guration with certi�cate set L, and �0 be another con�guration inwhich these certi�cates are valid. We show that the upper envelope of �0 has the samevertices as the upper envelope of �.First, the x-certi�cates prove the correctness of the contender edge pointers. Any vertexthat has a y-certi�cate in L is also guaranteed to be placed in �0 as in �. It remains toshow that those vertices without a y-certi�cate cannot be placed di�erently in � and �0.We consider a maximal contiguous sequence S of vertices without y-certi�cates in L,and we assume without loss of generality that the red function is above the blue functionin this stretch in �. Let �(x) be the di�erence in � between the red slope and the blueslope at x. This function increases at red vertices and decreases at blue vertices. It doesn'tchange sign at a red vertex of S, as this would imply a yt[� � � ] certi�cate in L.Hence, on the interval de�ned by S, �(x) is positive until a certain blue vertex, and
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(v)Figure 4.2: A partial list of events. The certi�cate that changes sign is indicated for eachtransition. There are three additional cases not shown: (i) and (iii) in mirror image, andthe event corresponding to the x-certi�cate.then is negative. If the contender edge of this vertex is a, there will be sl[� � � ] certi�catesto the left of the left endpoint of a and sr[� � � ] certi�cates to the right of the right endpointof a. These certi�cates guarantee that the red function remains above the blue function onthe interval de�ned by S.

4.1.2 MaintenanceLemma 4.2 shows that the certi�cate list described above is su�cient to maintain the upperenvelope. As in the case of any kinetic data structure, all these certi�cates are placed in aglobal event queue, where each certi�cate is stamped with its failure time. When it is timeto process the �rst event in the queue, we need to update the certi�cate list. Below is thelist of changes that need to be performed for each type of event. A pictorial description isshown in Figure 4.2.
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Event: failure of yli[ab]Delete yri[ab:next]; yli[ab];if 9yri[ab]then fDelete yli[ab:prev]; yri[ab]Create slt[ab]; srt[ab]; yt[ab]Remove ce(ab) from outputgelse fCreate yri[ab]; yli[ab:prev]Add a or remove b in outputg
Event: failure of yt[ab]Delete yt[ab]; slt[ab]; srt[ab];Create yli[ab]; yri[ab:next];Create yri[ab]; yli[ab:prev];Add ce(ab) to output
Event: failure of slt[ab]Delete slt[ab]; srt[ab]; yt[ab];cd ab:prev;if d = a /* i.e., same color */then Create slt[cd]; srt[cd]; yt[cd];else Create sl[cd];Event: failure of sl[ab]Delete sl[ab];cd ab:next;
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4.1. CONVEX HULL 47if �(cd) 6= �(ab)then Create slt[cd]; srt[cd]; yt[cd];else if ce(cd) 6= ce(ab) then Create sr[cd];Event: failure of x[ab; cd]Delete x[ab,cd]; Create x[cd,ab];if 9x[ab:prev; ab]then Delete x[ab:prev; ab];else Create x[ab:prev; cd];if 9x[cd; cd:next]then Delete x[cd; cd:next];else Create x[ab; cd:next];cd:prev ab:prev; ab:next cd:next;cd:next ab; ab:prev cd;ce(ab) d; ce(cd) a;/* Now update intersection certi�cates */if 9yri[ab]then Delete yri[ab]; Create yri[cd];if 9yli[cd]then Delete yli[cd]; Create yli[ab];/* Update slope certi�cates if ab is below cd */if ab <y dthen fif 9yt[cd] then Delete slt[cd]; srt[cd]; yt[cd];if 9sl[ab] then Delete sl[ab];if �(ab) 6= �(ab:next) & b <s d then Create sl[ab]if �(cd:prev) 6= �(cd) & cd:prev <y ce(cd:prev) & a <s c then Create sl[cd:prev]elseif 9sr[ab] then if a <s dthen Delete sr[ab]; Create slt[cd]; srt[cd]; yt[cd];else Update sr[ab] to point to new ce(ab);g/* Symmetric treatment if cd is below ab (not shown) */
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48 CHAPTER 4. TWO-DIMENSIONAL PROBLEMSAs an example, consider the event yt[ab], which corresponds to case (iv), right to left,of Figure 4.2: a red edge moves above a blue vertex. In this case, we remove the threecerti�cates proving that the red edge was below the blue chain (bottom case of Figure 4.1),and add certi�cates to bracket the two newly formed intersections. Finally, the new edgeon the upper envelope is added to the output.Events corresponding to certi�cates yri[ab], sr[ab], and srt[ab] are exactly symmetricto yli[ab]; sl[ab], and slt[ab].In general, when a y-certi�cate changes sign, this modi�es the output: either two neigh-bor vertices merge into one, or the reverse. For the purpose of the recursive construction,it is therefore necessary to be able to handle such local structural changes in the input.Consider the case in which edge b disappears between a and c. Just before this happens, bis not the contender edge of any vertex. Hence, only a constant number of certi�cates mayneed to be removed: those whose name includes ab or bc between the brackets if they exist(Table 4.1); they are replaced by certi�cates involving ac instead. In the reverse direction,edge b appears and breaks up vertex ac into two vertices ab and bc, and once again onlycerti�cates with ac between the brackets need to be changed. A slope comparison betweenb and the contender edge of ac may be required to decide which of the two newly createdvertices should inherit the tangent certi�cates if there are any.4.1.3 Divide and Conquer Upper EnvelopeTo kinetize the divide and conquer algorithm, we keep a record of the entire computation ina balanced binary tree. A node in this tree is in charge of maintaining the upper envelopeof the two convex chains computed by its children. If an event triggers a change in theoutput of a node, this node passes on the event to its parent, as a local structural changeto the input, and so on to upper levels of the computation tree while this change remainsvisible. This structure has O(log n) locality and O�log2 n� responsiveness.As in the case of the one-dimensional kinetic tournament data structure (Section 3.3),we analyze e�ciency by considering time as an additional static dimension and chargingeach event to a feature of a three-dimensional structure with known worst-case complexity.The primal version of the problem is ill-suited for such an analysis, as the static structuredescribed by the convex hull over time is not the convex hull of the trajectories of theunderlying points. On the other hand, in the dual, the structure described by the upper
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4.1. CONVEX HULL 49envelope over time is exactly the upper envelope of the surfaces described by the underlyinglines. We can thus use results proving near-quadratic complexity for the upper envelopeof algebraic surfaces [95]. We also make use of the recent result of Agarwal, Schwarzkopf,and Sharir [8] about the near-quadratic complexity of the overlay of the projections of twoupper envelopes to obtain sharp bounds on the number of events due to x-certi�cates.Theorem 4.3. The KDS for maintaining the convex hull has O�n2+�� e�ciency for any� > 0 in a (�; n)-scenario. The hidden constant depends on � and �.Proof. We �rst focus on the events attached to a speci�c node of the computation tree thatinvolves a total of n red and blue lines. Consider time as a static third dimension: a linewhose parameters are polynomial functions of time describes an algebraic surface in threedimensions. The blue (red) family of lines is now a family of bivariate algebraic functions.Looking at the upper envelopes of the blue and red families, and at their joint upperenvelope in turn, we observe that a purple vertex on the associated maximization diagramcorresponds to a change of sign of a y-certi�cate (a \y-event") in the kinetic interpretation(Figure 4.3). A monochromatic vertex corresponds to the appearance/disappearance of anedge triggered by some descendant in the computation tree. As our surfaces are algebraicof bounded degree, their maximization diagram has complexity O�n2+�� for any � > 0by Theorem 2.7, and therefore the number of events due to y-certi�cate sign changes isbounded by this quantity1.Consider now the events corresponding to the x-reordering of two vertices of di�erentcolors (called \x-events"). In the 3-dimensional setting, a blue envelope vertex becomes anedge of the blue maximization diagram. Hence, an x-event corresponds to a point (x; t)above which there is an edge in both the blue and the red upper envelopes (Figure 4.4).In other words, each x-event is associated with a bichromatic vertex in the overlay of themaximization diagrams of the red and blue upper families. If we have are n bivariatealgebraic surfaces of bounded degree, the complexity of this overlay is also O�n2+�� for any� > 0 by Theorem 2.8. Hence, there are at most that many x-events.Finally, each pair of lines becomes parallel a constant number of times, so there areO�n2� slope events attached to the node we have been focusing on up to now.1The best known bound for this speci�c problem is tighter [6], but this bound is su�cient for our purposes.
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Figure 4.3: A vertex passes through an edge. In the dual space-time view, this correspondsto a vertex in the upper envelope of the surfaces described by the dual lines.Getting back to the full computation tree, we conclude that the total number of eventsC(n) satis�es the recurrence C(n) = 2C(n=2)+O�n2+��, and therefore C(n) = O�n2+��.In the worst case, the convex hull of n points in linear or higher order motion changes
(n2) times [6]; hence our KDS is e�cient.The kinetic data structure for the convex hull, as is, is not very useful if it doesn't havea query data structure built on top of it. This is, of course, easy to obtain: just keep thelist of vertices and edges in a dynamic binary tree instead of keeping them in a circular list.This doesn't change the e�ciency, and supports ray shooting and point location queries.4.2 Closest PairIt is rather simple to create a kinetic data structure that maintains the closest pair of a set ofpoints: create a kinetic priority queue on all possible pairwise distances. The problem withthis solution is that it is neither local nor compact (each point is involved in linearly manycerti�cates). To obtain a compact kinetic data structure, we can start from an e�cientalgorithm algorithm that computes the closest pair.



www.manaraa.com

4.2. CLOSEST PAIR 51

t

x
y

X

X
Y

Y

Figure 4.4: Two edges become parallel in the primal. In the dual, this means that twovertices cross each other in the x-coordinate. We have a vertex in the overlay of two upperenvelopes in the space-time view.Consider the following classic divide-and-conquer algorithm due to Shamos [84]: dividethe points into the left half and the right half and recursively compute the closest distances�L and �R within each half. Then check all pairs that are within distance � = min(�L; �R) ofa vertical median line x = x0 (Figure 4.5). A kinetic version of this algorithm would require,for each point p on the left side, a certi�cate of the form [xp < x0� �] or the converse. Theresulting KDS would not even be responsive: when the identity of the pair that realizes �changes, all certi�cates of the form above need to be updated, and there might be a linearnumber of them.This example shows that not all algorithms are well suited for kinetization. Surprisingly,in the case of the closest pair, we were not able to �nd a good kinetization for any knownalgorithm.In this section, we describe a new static algorithm for computing the closest pair of aset of points in the plane. The algorithm is based on the plane sweep paradigm. We thenconsider the kinetic setting: we have a set of items, and each item has a position that is acontinuous function of time. We add some data structures to the static algorithm to record
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[xc > d(a,b)]Figure 4.5: A traditional divide-and-conquer algorithm for �nding the closest pair. Thekinetization of this algorithm is neither local nor responsive, as the current closest monochro-matic pair ab is involved in �(n) comparisons.its history, and show that these data structures can be maintained as the items move. Thedata structures at a given time t always reect the history that would result if the planesweep algorithm were applied to the positions of the items at t. We show that the resultingkinetic data structure has the qualities that we required in the introduction.4.2.1 Static Algorithm and Proof SchemeThe static closest-pair algorithm is based on the idea of dividing the space around each pointinto six 60� wedges. It is a trivial observation that the nearest neighbor of each point is theclosest of the nearest neighbors in the six wedges. We show that an approximate de�nitionof nearest neighbor in each wedge (based on one-dimensional projections) is still su�cientto �nd the closest pair. The relaxed de�nition lets us compute neighbors e�ciently, andaids in the kinetization of the algorithm.In this section, we consider a set of items S in a �xed con�guration. For simplicity ofnotation, we don't distinguish between the items with their positions in this con�guration.The distance between two items p and q is denoted by d(p; q). The x-ordering of S is theordering of the projections of the positions on the x-axis. We also de�ne the +60�-orderingas the ordering of the orthogonal projection of the positions on an oriented line that makesa +60� angle with the x-axis, and similarly the �60�-ordering. We write <0; <+ and <�for these three orderings. The general position assumption means (1) that no items areequal in any of these three orderings, and (2) that no two pairs of items are at the same
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4.2. CLOSEST PAIR 53distance. With these assumptions, the structures described in this section and the closestpair are uniquely de�ned.Lemma 4.4. Let T be an equilateral triangle. Let u be one of the vertices of its boundary,and v be a point lying on the boundary edge of T opposite to u. Then for every point w inthe interior of T , d(w; v) < d(u; v)Proof. Let a be the length of a side of T , and b = d(u; v). The boundary edge thatcontains v has two end vertices, and we let z be the one farther from v. Then we can writed(v; z) = a2 + c, for some c with 0 � c � a2 . By the Pythagorean theorem, b2 = c2 + 34a2,and therefore: (b� (c+ a2))(b + (c+ a2)) = b2 � c2 � ac� a24= a22 � ac� 0Thus, b � c+ a2 ; the circle centered at v and of radius d(u; v) contains all three vertices ofT 's boundary, so it strictly contains all the points interior to T .We de�ne the dominance wedge of an item p, call it Dom(p), to be the right-extendingwedge bounded by the lines through p that make �30� angles with the x-axis. The item qis in Dom(p) i� p <� q and p <+ q.We de�ne the cover of an item q, denoted Cover(q), as the rightmost item that containsq in its dominance wedge (we add a special item at (�1; 0) as a sentinel) . The candidatesset of item p, denoted Cands(p), is the set of items whose cover is p, and the leftmost ofthose, denoted lcand (p), is called the left candidate of p. A pair (p; lcand (p)) is called acandidate pair. See Figure 4.6.Lemma 4.5. Let S be a set of items in general position. If (p; q) is the closest pair in Sand q 2 Dom(p) then q is the left candidate of p.Proof. First, suppose p is not the cover of q. This means another item r 2 S is to theright of p and such that q 2 Dom(r). In this case, r is contained in the interior of an
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Figure 4.6: The sets of points Maxima(p) and Cands(p), the leftmost candidate lcand (p),and the upper target UpTarget(p).
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(b)Figure 4.7: If (p; q) is the closest pair and q 2 Dom(p), then (a) p is the cover of q; (b) q isthe left candidate of p (Lemma 4.5).equilateral triangle with a vertex at q and extending leftwards, with p on its left boundary(Figure 4.7a). By Lemma 4.4, this contradicts the hypothesis that (p; q) is the closest pair.Hence p = Cover(q).Now, assume that there is a point q0 2 S \Dom(p) that is to the left of q. This time, q0is in the interior of the equilateral triangle starting at p and extending rightwards with q onits right boundary. Thus d(q; q0) < d(p; q) by Lemma 4.4 which contradicts the hypothesisonce again. Hence q is the left candidate of p. See Figure 4.7b.We now have at most n candidate pairs for a set of n items. We say that these arethe candidate pairs associated with the 0� direction. In order to catch the closest pair, weneed to repeat the same de�nitions for two other directions �60�. The dominance wedgeassociated with an angle � is simply the dominance wedge that would be obtained fromthe de�nitions above if the plane were rotated by �� around the origin.
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4.2. CLOSEST PAIR 55Corollary 4.6. The closest pair of a set of items S in general position is one of the (atmost) 3n candidate pairs associated with the three directions 0�; 60�;�60�.Proof. Say that (p; q) is the closest pair, with p to the left of q. The three dominance wedgesof p span the whole half-plane to the right of the vertical line passing through p. Hence,item q is contained in one of them. By the previous lemma, (p; q) is a candidate pair forthis direction.We need a few more de�nitions. For a given item p, we consider all the items to itsright, denoted Sp. The set of items of Sp whose cover is not in Sp is denoted by Maxima(p)(Figure 4.6).Proposition 4.7. If q; r 2 Cands(p) thenq <+ r, r <� q , q is smaller than r in the y-ordering:Proof. As q; r are not in each other's dominance wedge, r is either above or below thedouble wedge delimited by the �30� lines passing through q. Whether it is above or below,the <+ and <� orderings are opposite of one another. Also, the <+ ordering is the sameas the y-ordering.The dominance wedge of p cuts Maxima(p) in three sets: the central set, those itemsin the dominance wedge, are the candidates of p. The lowest item of the set above Dom(p)is called the upper target of p, denoted UpTarget(p). The highest item below Dom(p) iscalled the lower target of p, denoted LowTarget (p). The upper target of p is exactly theleft candidate of p for direction +60�. See Figure 4.6 again. We also add here sentinels atin�nity above and below the plane so that the targets are well-de�ned for all items.Proposition 4.8. If UpTarget(q) = UpTarget(r) and q <0 r, then q <� r. If LowTarget (q) =LowTarget (r) and q <0 r, then q <+ r.Proof. We only prove the �rst statement. Let p be the common target of q and r, andassume that q is to the left of r. If r <� q, then r is above the dominance wedge of q. Butr is below p, so p cannot be the upper target of q, a contradiction.



www.manaraa.com

56 CHAPTER 4. TWO-DIMENSIONAL PROBLEMSWe now sketch the static algorithm to compute all the candidate pairs associated withthe horizontal direction. We insert the items from right to left. Before inserting item p,the set Maxima(p) is stored in a binary tree Maxima , sorted by increasing y-coordinate(or, equivalently, by �60�-ordering). The tree is augmented at each node with a �eld thatcontains the leftmost item in the subtree rooted at that node.2 Here is the algorithm:1. Initialize Maxima to ;.2. For each point p 2 S from right to left,(a) Find UpTarget(p) and LowTarget (p) in Maxima .(b) Set Cands(p) = Maxima \Dom(p).(c) Set lcand (p) to be the leftmost element of Cands(p).(d) Replace the items of Cands(p) by p in Maxima .It is clear that the plane sweep algorithm can be implemented to run in O(n logn) time.Sorting the points of S in preparation for sweeping takes O(n log n) time. We store Maximain an augmented balanced binary tree structure that supports logarithmic-time searches,insertions, deletions, splits, and joins [33]. Computing Cands(p) requires two O(log n) timesearches on Maxima , since Cands(p) is a consecutive subsequence of Maxima. SplittingCands(p) out of Maxima and inserting p in its place (with the update of the \leftmost"�eld) takes O(log n) per item p. Thus the total running time is O(n log n).The same algorithm is applied with the plane rotated +60� and �60� to obtain all thecandidate pairs referred to in Corollary 4.6. A tournament on the distances between thecandidate pairs thus obtained allows us to select the closest pair in additional linear time.Hence, we obtain the closest pair in worst-case total time O(n log n).The algorithm to compute the candidate pairs uses only comparisons in the three di-rections 0�; 60� and �60�. Hence, the cover, target, and left candidate of each point arecerti�ed by the orders along these three directions. We refer to all these attributes as thecone structure of S.Proposition 4.9. The following set of certi�cates on a set of items S:2The \leftmost" �eld is not needed for the static algorithm because we can a�ord to look at all elementsof Cands(p) explicitly without increasing the running time. It will be useful later for the kinetization.
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4.2. CLOSEST PAIR 571. those that certify the 0� order of S,2. those that certify the 60� order of S,3. those that certify the �60� order of S,4. those that certify a tournament on the candidate pairs of S,are enough to certify the cone structure and the closest pair of S.This proof structure has linear size and O(log n) locality.Proof. The validity of the proof is given by the correctness of the algorithm.As for locality, each item is involved in at most 2 certi�cates per ordered list. Moreover,for each direction, it is involved in at most two candidate pairs: with the item that is its leftcandidate, and with the item that it is the left candidate of. Therefore, in the tournament,a given item appears in O(1) leaves, and in O(log n) internal nodes. Hence, the proofstructure has O(log n) locality.4.2.2 KinetizationWe now have a structure that contains the closest pair, and a set of certi�cates that provethat this structure is valid. We now need to examine how this structure needs to changeupon a certi�cate failure, and count the worst case number of events that can happen inthe polynomial model of motion.We already know how to update the tournament on the candidate pairs (Section 3.3).We need to describe here how to update the cone structure when the ordering of two itemschanges along one of the three privileged directions. When two items p; q interchange theirx-ordering, this can trigger a change in the cover of linearly many other items (Figure 4.8).Similarly, a change in the +60� ordering can change linearly many targets (Figure 4.9).In order to obtain a responsive kinetic data structure, we represent the targets and coversimplicitly using three binary trees:1. Cands(p) contains the candidates of p, as a sequence of items sorted in the y-ordering.(This order is the same as the �60�-orderings by Proposition 4.7.) This sequenceis stored in a balanced binary tree and supports the usual searching and update
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58 CHAPTER 4. TWO-DIMENSIONAL PROBLEMSoperations. In addition, each node of the tree has a pointer to its parent in the tree,and the root of the tree for Cands(p) points to p. Thus each item q 2 S can �nd itscover in O(logn) time. Each node in a Cands() tree also keeps track of the leftmost (inx-order) item in its subtree, and so the root of Cands(p) records lcand (p). The parentpointers can be maintained as part of the standard tree update operations, within thesame asymptotic time bound, as can the \leftmost" �elds. As part of our algorithm,we will make sure that the \leftmost" �elds are maintained correctly whenever thex-order of items changes.2. Hitsu(p) records all the items for which p is an upper target, sorted in the �60�-ordering (or, equivalently by Proposition 4.8, in the x-ordering). The sequence isstored once again in a balanced binary tree, with a parent pointer at each node anda pointer to p at the root, so that the upper target of any item can be found inlogarithmic time.3. Hits`(p) records all the items for which p is a lower target in a similar fashion.These are the only data structures needed for the kinetization. In particular, we don'tuse the Maxima data structure described in the static case. The static algorithm is usefulto create these data structures from scratch in O(n logn) time (the Hits structure can bebuilt incrementally each time a target is found).The following algorithmic sketch shows how to update all the a�ected Cands(), Hits(),and lcand () �elds when two items p and q exchange positions in the x-order of S. Withoutloss of generality, assume that p is left of q before the exchange. Furthermore, assume thatp is below q at the instant of exchange (similar pseudo-code applies if p is above q).1. If q = UpTarget(p), then(a) Split o� the portion of Cands(q) insideDom(p) and join it to the top of Cands(p).(b) Let w = LowTarget (q). Delete q from Hits`(w) and insert it into Hits`(p).(c) Let v be the new bottom item of Cands(q), if any, or else the upper target of q.Delete p from Hitsu(q) and insert it into Hitsu(v).2. Let p0 = Cover(p) and q0 = cover(q). If p0 = q0, then update lcand (p0) starting fromthe common ancestor of p and q in the tree for Cands(p0).
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Figure 4.8: An x event and the change in the Cands sets.A few explanations and Figure 4.8 might help the reader to follow this algorithm. If q isa target for p, then their x-exchange changes the cone structure. Speci�cally, the items ofMaxima(q) in Dom(q)\Dom(p) are transferred from Cands(q) to Cands(p). Item p gets anew target; the new point of contact between the segment from p and its target lies insideDom(q). Likewise q gets p as a target. Step 1 handles these changes.The only edges of the maxima diagram that change are those that extend to the rightfrom p and q|there are no target changes for items either right or left of fp; qg|so theoperations of Step 1 su�ce to update the maxima diagram.If neither p nor q is a target for the other, then the maxima diagram does not change|the Cands() and Hits() �elds do not need to be updated.Whether or not the maxima diagram changes, one lcand () �eld may change. If p; q 2Cands(u) for some item u, we need to ensure that the \leftmost" �elds are updated inthe binary tree representing Cands(u), so that any comparison of p and q in that tree isre-evaluated; this may cause lcand (u) to change. Step 2 takes care of this.Each step can be accomplished in logarithmic time. In particular, step 1a can be donebecause Cands(q) is sorted in the �60�-ordering. The rescheduling of the modi�ed certi�-cates for the ordering that changed also takes logarithmic time.* * *The following pseudo-code updates the a�ected �elds when two items p and q exchangepositions in the +60�-order of S (at the instant of exchange, the line through p and q makesan angle of �30� with the x-axis). Without loss of generality, assume that p is to the left ofq and above q. There are two cases, depending on whether q enters or exits from Dom(p).
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(a) (b)Figure 4.9: A 60� event. (a!b) q enters Dom(p); (b!a) q exits Dom(p).In the �rst case, q enters Dom(p). Update the data structures thus:1. If q = LowTarget (p) then(a) Let v = Cover(q). Delete q from Cands(v) and insert it into Cands(p).(b) Let t be the leftmost item in Hitsu(q) that is to the right of p, if any, or else thelower target of q. Delete p from Hits`(q) and insert p into Hits`(t).(c) Split o� the subsequence of Hitsu(q) whose items are to the left of t (and henceleft of p) and join it onto the bottom of Hitsu(p).In the second case, q exits Dom(p). The pseudo-code in this case just inverts the actionperformed in the �rst case:1. If q 2 Cands(p) then(a) Let t = LowTarget (p). Delete p from Hits`(t) and insert p into Hits`(q).(b) Split o� from Hitsu(p) the items larger than q according to <�, and join themonto the top of Hitsu(q).(c) Let v be the new rightmost item of Hitsu(p), if any, or else the cover of p ifHitsu(p) is empty. Delete q from Cands(p) and insert q into Cands(v).Here are a few explanations to be read with Figure 4.9. Consider �rst the case in whichq enters Dom(p). If q is not the lower target of p, then q =2 Maxima(p) and the exchangeof p and q in the +60�-order does not a�ect the cone structure. No data structure updatesare necessary.If q is the lower target of p, the cone structure changes, but only in the vicinity of p andq. The exchange of p and q does not change the targets of items to the right of p. Only the
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4.2. CLOSEST PAIR 61lower target of p needs to be updated; Step 1b takes care of this. Of the items to the leftof p, only those with q as their upper target (i.e., members of Hitsu(q)) need to have theirtargets changed to p. Step 1c does this. The Cands() set changes only for p (because qenters it) and for the item v whose Cands(v) set q leaves; Step 1a does this. The \leftmost"�elds are updated in the Cands() binary trees during the modi�cation, so lcand (p) andlcand (v) are correctly maintained. The Cands() and Hits() lists are enough to specify thecombinatorial structure of the maxima diagram; since they are correctly maintained, so isthe maxima diagram.In the case in which q exits Dom(p), the changes to the maxima diagram are the inverseof those in the �rst case. The update procedure for this case inverts the action of the �rstupdate procedure.All the operations above can be done in logarithmic time. In particular, step 1b of the�rst case can be done because the items in Hitsu(q) are in x-order. The O(1) certi�catesthat change can be updated in the event queue in logarithmic time also.The procedure for exchanging two items in the �60�-order is symmetric to the one for+60�-order exchanges. * * *The �nal element of our kinetic data structure is a kinetic tournament on the 3n dis-tances corresponding to (p; lcand (p)) pairs (this adds 3n certi�cates to our KDS). The rootof the tournament tree contains the closest pair at any time. Note that when lcand (p)changes, it triggers a discontinuity of the associated distance in the kinetic tournament.Hence, although we start with a non-dynamic scenario, the kinetic tournament is acting ona dynamic scenario.Theorem 4.10. The KDS for the closest pair has e�ciency O�n�2�+2(n) log2 n� in a(�; n;m)-dymanic scenario.Proof. An event for the cone structure is an exchange of order of two items along one of thethree orders. As a pair of items can exchange their order at most � times, there are O�n2�such events, and we saw earlier that each such event is processed in O(logn) time.The square of the distance between two items is a polynomial of degree 2�. Hence the
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62 CHAPTER 4. TWO-DIMENSIONAL PROBLEMSscenario induced for the kinetic tournament is a (2�; n; n2)-dynamic scenario and thereforehas e�ciency O��2�+2(n2) log2 n� (Lemma 3.8).We therefore have a kinetic data structure for the closest pair. Its locality is constant,it has linear size, it has O�log2 n� responsiveness, and has near optimal e�ciency.4.3 ConclusionIn this chapter, we presented kinetic data structures for some fundamental computationalgeometry problems. We hope that these examples will have convinced the reader that thereis a craft in both the design and the analysis of kinetic data structures. In particular,kinetic data structures can be combined, as in the closest pair problem, and it is thereforeimportant to study carefully kinetic data structures for the basic problems, as we can expectthat they will be useful in more elaborate setups.It is possible to insert and delete items from the convex hull KDS, but this mightrequire linearly many changes in the worst case. To obtain a kinetic data structure withgood dynamic properties, it would be tempting to kinetize the dynamic data structure ofOvermars and Van Leeuwen [81], which maintains the convex hull of a set of points withO�log2 n� cost per insertion or deletion. Proving that such a scheme is e�cient (if it isso) seems challenging as part of the structure requires the maintenance of the median ofn moving values, a problem for which no tight combinatorial bounds are currently known.The closest pair can be made dynamic with polylogarithmic cost per insertion/deletion ifwe use multi-level search trees based on the three orderings.
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Chapter 5
Implementation
The kinetic data structures described in Chapter 4 have been implemented [20], with theaddition of two kinetic data structures: one for the Voronoi Diagram and another one forthe minimum spanning tree. The implementation (Demokin) is intended as a proof ofconcept. It comes with a user interface speci�cally built to demonstrate how kinetic datastructures work.In this chapter, we do not intend to describe a full implementation. Our goal is ratherto give a high-level description of three aspects of this implementation: an overview of theuser-interface (Section 5.1.1); an overview of the basic structure of a KDS implementation(Section 5.1.2); and a case for a \certi�cate-centered" implementation (Section 5.1.3). InSection 5.2, we delve into two speci�c aspects of the implementation that are the mostimportant: the computation of the failure times of certi�cates (which poses speci�c problemsof robustness), and the software system issue of combining existing kinetic data structuresas black boxes.We describe exactly the user interface that we implemented. As for the program struc-ture, it is close to what was implemented in spirit, but we take the liberty of describingwhat we think the architecture ought to have been, based on the experience gained duringthe implementation.

63



www.manaraa.com

64 CHAPTER 5. IMPLEMENTATION5.1 Overview5.1.1 User InterfaceThe main window of Demokin (Figure 5.1, left) contains the display of the moving items,as well as a thermometer (vertical left) that indicates the amount of processing time usedfor the kinetic data structure maintenance exclusively (the drawing time is not included).At the bottom of the window, a tape runs from right to left. Each time an event happensin one of the active KDSs, a tick mark is put at the right end of the tape. An externalevent is indicated by a large red tick mark, an internal event is indicated by a small bluetick mark.The control window (Figure 5.1, right) contains a few buttons to start and stop asimulation and to control the appearance of the moving items (points or disks). Eachkinetic data structure is controlled by a line of three checkboxes. The �rst checkbox indicateswhether the KDS is active or not, the second one controls whether to display the certi�catesor not, and the third box allows the user to interrupt the simulation at every external event.With the �rst box, we can show that several kinetic data structures are able to run inparallel, but we can also select only one KDS in order to examine the frequency of events(on the bottom tape) and the processing cost in the thermometer.Each KDS presents its certi�cates in its own speci�c way. For instance, for the Voronoidiagram (the prettiest KDS if not the most algorithmically elaborate), we choose to displaythe Delaunay triangulation as the certi�cates. For the convex hull, we display the twosubhulls, and the triangulation of the sleeve between them. An extra panel allows the userto recursively inspect the substructures (Figure 5.2). For the closest pair, the user candisplay each of the three cone structures or simply all the candidate pairs (Figure 5.3).Finally, the control panel includes a button \Brute force" that inactivates all kinetic datastructures, and replaces them by a recomputation from scratch at a �xed time interval. Therecomputation frequency can be varied, to show that a high frequency is computationallyexpensive, while a low frequency is inaccurate (Figure 5.4).An important aspect of this implementation cannot be conveyed by these screen snap-shots: the structures shown are redrawn continuously as the objects move, allowing the userto understand the distinction between the continuously-changing positions of the items and
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5.1. OVERVIEW 65

Figure 5.1: The main window and control panel of Demokin.

Figure 5.2: Certi�cate structure for the convex hull diagram. The control panel on the leftallows the user to navigate in the recursive structure of the convex hull proof.
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66 CHAPTER 5. IMPLEMENTATION

Figure 5.3: The three cone structures of the closest pair KDS, and the set of candidatepairs selected. The closest pair is emphasized by circles.
(a) (b) (c)Figure 5.4: Comparison between the kinetic data structure for the convex hull diagram anda method that recomputes the convex hull diagram every �t. Three fast items have beenput in a large collection of slow items. (a) If �t is small, the result is accurate but thecomputation cost is huge, as indicated by the vertical bar on the left. (b) With a larger �t,the computation cost is small, but the convex hull diagram is most often wrong. (c) Thekinetic data structure keeps track of the convex hull diagram exactly (each event requiresvery little computation).the discretely-changing discrete attributes and kinetic structures based on these items.5.1.2 Structure of a KDS ImplementationWe now consider how to implement a new KDS. There are three classes that a KDS imple-mentation should subclass: kds, certificate, and item. In fact, we will see later that theKDS will subclass some prede�ned subclasses of item and certificate. For instance, thereis a subclass of item for each dimension (1 or 2), and there is a subclass of certificatefor each type of geometric test. We will refer here to the subclasses by the names above, asthere is no confusion possible.
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5.1. OVERVIEW 67Only one object of the subclass of kds is created: it is the one in charge of the creationof the structures, of the management of the event queue, and the like. This object is alsothe owner of all the certificate and item objects that are created. In this section, werefer to the unique kds object as \the KDS". It is created by a client who is interestedin keeping track of the discrete attribute the KDS is able to maintain. Note that when wecombine kinetic data structures, the client may be a kinetic data structure itself. All KDSskeep a pointer to a global event queue and schedule their certi�cate failures in this eventqueue.For each moving item, the client asks the KDS to create an item object with item*kds::newItem(), then sets its equation of motion. If the KDS is dynamic, this request canbe done at any time, otherwise it should be done only when the KDS is inactive. Similarly,the client can ask the KDS to destroy the item objects previously created. The reasonwhy it is the KDS that should create the object is so that it can create an object of theappropriate subclass. In general, it will be necessary to store some information speci�c tothe KDS in an item.When the KDS is inactive, no particular structure is created apart from all the itemsrequested. When the KDS is made active (the \current time" is given as a parameter), itcreates whatever structures are necessary, as well as all certi�cates that certify the kineticstructure at the current time. A certi�cate is where everything happens. For each certi�catesubclass, we need to implement two methods: failureTime and fails. The �rst methodis in charge of computing the failure time of the certi�cate. In general, this method isalready implemented by the superclass, unless we have very exotic certi�cates. The methodfails is in charge of updating the KDS structures when the certi�cate fails. Finally, anitem keeps track of the certi�cates in which it is involved, and requests these certi�cates torecompute their failure times upon a motion plan update.To summarize, the kds object is in charge of creating the global structures, and thecertificates compute their failure times and change the global structure when they fail.The item is in charge of handling a motion plan update.* * *The description above indicates that there are a number of procedures common to allKDS implementations. These procedures can be handled by the base classes:
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68 CHAPTER 5. IMPLEMENTATION1. The global event queue has a method update(time t) that takes care of the eventscheduling. It processes all events until time t to bring the kinetic data structuresup-to-date.2. An item keeps a list of all the certi�cates it is involved in. When an item updates itsmotion plan, it automatically asks all the certi�cates that it partakes in to recomputetheir failure time.3. A mechanism (described in Section 5.2.2) is provided to combine kinetic data struc-tures, either to have them run in parallel on the same input, or to use the output ofone as the input of another.5.1.3 Certi�cate-centered ImplementationThe most important lesson of our implementation is this: when implementing a kinetic datastructure, one is tempted to make it event-centered, but it should be certi�cate-centered.Here is an example to illustrate this cryptic statement.Suppose that we want to create a kinetic data structure that keeps all items inside theunit square. We call this kinetic data structure a kWall. In order to reverse the velocityof an item when it reaches the boundary of the unit square, we create an object calledbounceEvent. Its failure time is the earliest time at which the item reaches one of the fourwalls, and we store in the object the wall that is going to be hit. When it is time for thisevent to happen, depending on the wall that is hit, we change the velocity of the objectappropriately, and recompute the new failure time. This is what we call an event-centeredimplementation.In a certi�cate-centered implementation, we create four certi�cates per item: one foreach side of the square (which we call walls). That is, we have a certi�cate that guaranteesthat the item is below the top wall, one that guarantees that the item is above the bottomwall, and two more for the side walls. Each certi�cate has a distinct failure time, and is putin the event queue independently, thus using more memory, even for certi�cates that weknow will never fail (something will happen to them before they fail). This is the approachwe advocate. We saw that it consumes more memory. Is it more time-e�cient? Not quiteso: when a certi�cate fails, the equation of motion of the item involved changes, and wetherefore cannot avoid recomputing the failure time of all four certi�cates dependent on



www.manaraa.com

5.2. IMPLEMENTATION DETAILS 69this item.Let's consider the event-centered solution in a context in which an item's equation ofmotion includes an acceleration due to gravitation. When the item hits the bottom wall,it bounces against it, but the bottom wall might be hit again before any other wall. Aswe will see in Section 5.2.1, we have to be very careful to discard the �rst root whencomputing the next time the item will hit the bottom wall, but the �rst root should not bediscarded when computing the time at which the item bounces against the other walls. Ina certi�cate-centered solution, this problem is taken care of automatically.In general, the creation of one object per certi�cate allows us to write more elegant codewith fewer special cases.
5.2 Implementation DetailsIn this section, we provide a few implementation details regarding questions that are not ofa combinatorial nature, but that deserve some attention.The �rst question that we address here is about robustness. In geometric algorithms, oneoften assumes general position as a way to obtain simpler code. To obtain general position,the careful implementor uses a symbolic perturbation scheme [46], while the less careful onereadily perturbs all inputs by some small random amount. In a kinetic data structures, anevent is precisely a degeneracy, and this leads to the most important robustness problemthat we address below.The second question is in the realm of software systems. We show how to combine kineticdata structures. Indeed, an important aspect of a good software library is the possibilityof plugging together di�erent data structures in a seamless fashion. In the second partof this section, we give some directions on how to do the same thing with kinetic datastructures. The e�ciency-minded reader will notice that this system is likely to be fairlyslow, in particular due to the heavy usage of memory allocation, but our goal here is onlyto give a good prototyping environment.
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70 CHAPTER 5. IMPLEMENTATION
t0 t1
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?Figure 5.5: If a certi�cate fails at time t1, special care needs to be taken to compute thefailure time of its opposite.5.2.1 Computing Failure TimesIn our implementation, all the items are given a velocity that is either constant or changingwith a constant downward acceleration (gravitation). All functions are therefore polyno-mials, and the failure times of all certi�cates are roots of polynomials. The highest degreepolynomials we need to solve are of degree 7: they correspond to the InCircle test usedfor the Voronoi diagram. If the acceleration is the same for all points, the polynomials areonly of degree 6.To �nd the roots of polynomials of degree more than two, we use the Laguerre methodas implemented in \Numerical Recipes in C" [85]. The Laguerre method returns all (realand complex) roots of a polynomial, and is certainly not the most e�cient method for ourproblem, but it is the solution we adopt in order to make sure that no root is missed (whichwe could not guarantee if we had used a method that �nds a single root).Let us not discuss in any more detail the exact way we compute the roots of our polyno-mials. This is not our �eld of expertise, and the model of motion|polynomials|is anyhowtoo restrictive for any real application. However, whatever way is used to compute the roots,there are robustness issues that inuence the combinatorial questions. Mostly, robustnessproblems come from the fact that we cannot �nd roots very accurately.To �x ideas, let us consider the convex hull diagram. A certi�cate c is a CCW test involvingthree items, and has an associated function fc(t) that is zero at times when the test fails.When computing the failure time, we need to �nd the smallest root of fc that is greaterthan t0, if t0 is the current time of the simulation. Now, when this certi�cate c fails attime t1, its opposite usually remains in the proof after t1, and the associated polynomial is�fc(t). Due to numerical inaccuracies, the quantity �fc(t1) is not exactly zero, but can beof either sign. Finding the �rst root of �fc that is greater than t1 will sometimes spuriouslyreturn t1 again (or, rather, a quantity slightly greater than t1). See Figure 5.5.
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Figure 5.6: This is a Delaunay triangulation. Due to precision errors, we mistakenly thinkthat abcd become cocircular (at t1) before bcd become collinear (at time t2. The result ofthis out-of-order scheduling is a corrupted structure at t+1 . It can be detected by checkingthe sign of CCW(b; c; d) when we deschedule it.There are a number of ways to address this problem. The simplest is as follows: whena KDS creates a function fc(t) associated with a certi�cate c, it creates it so that the signof fc(t) at the current time is positive. What we mean is that it creates the function thatwould be positive at t+ if there was no numerical inaccuracy. Then the root-�nding methodcan be modi�ed to �nd, instead of the �rst root greater than t0, the �rst root greater thant0 where the function becomes negative. This automatically discards the spurious rootmentioned above.There is another problem that may occur due to numerical inaccuracies: two eventsmight happen out of order in the event queue, leading to an invalid structure (Figure 5.6).Some other swaps in the event queue might be harmless if the events involved are not\connected" in the geometric structure as they are in Figure 5.6. This is an issue thatdeserves much more careful study. In our implementation, we have a simple mechanism todetect harmful swaps, which is as follows: whenever we schedule or deschedule a certi�catein the event queue, we verify that its sign is positive at the current time1. If it is not, westop the simulation immediately. In an application setting, we could instead restart theKDS from scratch at the current time. This would be reasonable, as we observed that theharmful swaps were extremely rare.The �rst technique we describe uses the sign of a certi�cate to decide whether to discardthe �rst root or not. The second technique uses the same sign to detect some dramaticproblem. How do we do both at once? Here is a solution: when processing an event,1In the existing implementation, we check this sign only upon scheduling and not upon descheduling.
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72 CHAPTER 5. IMPLEMENTATIONwe keep a pointer to the failing certi�cate that triggered this event. When scheduling ordescheduling a certi�cate, we compare this certi�cate with the failing certi�cate. If they arethe same (and by this, we mean symbolically the same, and not only physically), only thendo we use the sign to discard the potentially spurious �rst root. Otherwise, we use the signto detect a potentially harmful swap.As with all algorithms that involve algebraic computations, there are important robust-ness issues that require more careful scrutiny. In our implementation, we only addressedthem up to the point at which we could obtain accurate simulations for a few thousand items.Guibas and Karavelas [59] replaced the root-�nding method with a bracketing method usingSturm sequences, a technique that should allow them to use exact arithmetic and guaranteea robust implementation.5.2.2 Combining Kinetic Data StructuresWe now switch gears radically and address a program design issue, that of combining kineticdata structures. There are essentially two contexts in which we need to combine KDSs.Let's consider the closest pair kinetic data structure (Section 4.2). We can think of itas three kinetic data structures that maintain cone structures and candidate pairs. Eachcandidate pair de�nes a one-dimensional moving item (its separation), and all these itemsform the input of a kinetic tournament. When an item changes its equation of motion, itis necessary to �nd all certi�cates and items that depend directly upon this item.Sometimes, it is necessary to have di�erent kinetic data structures running on the samedata. In an action game, we may want to keep track of visibility structures while performingcollision detection, and we would like to run transparently in parallel two kinetic datastructures that we could have created earlier independently. The issue is more subtle thanit seems, mostly due to changes of motion. Indeed, it might happen that the two structuresuse exactly the same certi�cate, say CCW(p; q; r). Suppose that upon failure of this certi�cate,the collision detection KDS decides that it is necessary to change the motion of p. In thiscase, the visibility KDS should be warned of this fact. Moreover, the KDS should be awarethat the certi�cate CCW(p; q; r) that it is asked to recompute the failure time of is currentlyfailing. This is necessary for the reasons surveyed in Section 5.2.1. Hence, the integrationof di�erent kinetic data structures has to be done carefully.
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5.2. IMPLEMENTATION DETAILS 73* * *Here is our approach to these problems. To be able to run several KDSs on the samedata, we create a special KDS, called a flock, whose purpose is to distribute the data toseveral slave KDSs. As we said that an item belongs to the KDS that created it, we need tobe able to create clones of items, that is, items that don't keep any equation of motion butonly a pointer to another item that holds the equation of motion. Conversely, the originalitem needs to be able to access and warn its clones when it updates its motion plan. Thisalso means that any KDS is de�ned as a template: the name of the item class that it hasto subclass is a parameter to the template.class item {private:list<item> dependentItems;list<certificate> dependentCertificates;kds *owner;public:registerDependentItem(item *i);motionChanged();// Warns all dependent items and asks all dependent certificates// to recompute their failure times....class clone2d: public item {item2d *getOriginal();// Returns the original item this is the clone of...}class flock: public kds<item2d> {register(kds<clone2d> *k);// Each item2d will be distributed to all registered KDSs....}
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74 CHAPTER 5. IMPLEMENTATIONHaving a KDS be a template based on a variable item class is natural and arises inthe serial way to combine KDSs also. As we saw, the candidate pairs selected by the conestructures have to be fed into a kinetic tournament. Hence, the kinetic tournament shouldbe able to be based either an item1d, or what we call an itemEdge.class item1d: public item {setMotionEquation(const polynomial &p);...}class itemEdge: public item {private:item2d *fromItem, *toItem;public:setEndPoints(item2d *i1, item2d *i2);...} Here is the way we de�ne the closest pair KDS. It needs to be a ock of three conestructures, and the cone structures feed their candidate pairs to a kinetic tournament. Weassume we already have a cone structure KDS called kConeStructure; it has virtual meth-ods doCreatePair and doDeletePair that are called whenever a candidate pair appears ordisappears. We �rst subclass it to allow it to output its candidate pairs to a tournament:class kMyConeStructure: public kConeStructure {private:kTournament<itemEdge> *tournament;doCreatePair(coneItem *i1, coneItem *i);doDeletePair(item *);public:setOutput(kTournament<itemEdge> *);}kMyConeStructure::doCreatePair(coneItem *i1, coneItem *i2)
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5.3. TESTS 75{ itemEdge *e = tournament->newItem();e->setEndPoints(i1->getOriginal(),i2->getOriginal());i1->registerDependentItem(e);i2->registerDependentItem(e);} Once we have this subclass, the closest pair KDS can take three of these cone structuresand a minimum-keeping tournament, and plug them together.class kCP: public kFlock {kMyConeStructure<clone2d> cones[3];kMinTournament<itemEdge> tournament;}kCP::kCP(){ for (i = 0; i <= 2; i++) {register(&cones[i]);cones[i].setOutput(&tournament);}...} If the closest pair is used for collision detection between sets of disks of equal size,the tournament can be subclassed so as to be warned when the minimum changes usinga mechanism similar to doCreatePairs. We can then recompute the time at which theclosest pair is scheduled to collide and insert an event at that time.5.3 TestsIt is not easy to compare meaningfully a kinetic data structure with any other method, inparticular with a �xed time-step method. Indeed, it is always possible create a scenario
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76 CHAPTER 5. IMPLEMENTATIONn tkin tmin tavg1000 3.7 189.4 0.342000 10.3 574.5 0.864000 32.2 4756.8 1.978000 110.7 14643.6 4.4416000 559.7 67074.1 11.4132000 3251.0 372959.4 34.63Table 5.1: Comparison between the convex hull KDS and a �xed time-step recomputation.

with one very fast object and many very slow objects: a �xed time-step method has tolook at all objects at a frequency adapted to the fastest object. The notion of a \typical"scenario is not well de�ned either.For lack of a better choice, we consider random items as in Chapter 6: each item isgiven an initial position and velocity independently drawn from the unit square. We run akinetic data structure on these items between time 0 and time 1, and record the processingtime required to perform the simulation. In order to compare it with a �xed-time-stepsimulation, we also record the average and the minimum time between two external events.We then calculate the user time required for a �xed-time-step simulation that uses each ofthese as time-steps. For these latter experiments, we use the ready-to-use routines providedwith LEDA 3.6.1 [75].Results are summarized in Table 5.1 for the convex hull (all quantities are averagedover 10 runs) and in table 5.2 for the Voronoi diagram (all quantities are averaged over 4runs). All experiments were done on an O2 workstation with a R10000 processor and -O2optimized compiling. The meaning of the columns are as follows (all times are in seconds):
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5.3. TESTS 77n tkin tmin tavg1000 159 1.8E+8 5,1662000 453 2E+9 14,5524000 1,328 8E+9 40,9678000 3,934 1.2E+11 115,49816000 11,820 5.4E+11 326,73732000 36,733 5E+12 925,271Table 5.2: Comparison between the Voronoi diagram KDS and a �xed time-step recompu-tation. n Number of pointstkin Time of the KDS,tmin Time necessary to recompute the convex hull/Voronoi dia-gram from scratch at each time step, if the time step is theminimum time between two external events,tavg Time necessary to recompute the convex hull/Voronoi dia-gram from scratch at each time step, if the time step is theaverage time between two external events.As can be seen in the tables, a �xed time-step simulation can give widely varying rangesof processing time depending on the time-step parameter. In order to improve a �xed-time-step method, one can think of several modi�cations to the na��ve recompute-from-scratchmethod. Let us consider the convex hull.First, one can keep the convex hull at a time step t and verify at the next step if it is stillcorrect. This use of temporal coherence can be found for instance in the collision detectionpackage I-Collide [32]. However, as all the data needs to be examined at each time step,it amounts to replacing an O(n log n) algorithm by a linear-time veri�cation in most of thecases. This improvement can be signi�cant but the fundamental problem of choosing thetime step remains.Second, one can imagine a number of heuristics to predict an interval during which theattribute under consideration will not change. But isn't this exactly what is done withkinetic data structures?



www.manaraa.com

78 CHAPTER 5. IMPLEMENTATION5.4 ConclusionAs we mentioned in the introduction of this chapter, there is an implementation of allthe kinetic data structures described in this thesis, although it does not conform to thedescriptions of this chapter. Nevertheless, the implementation gives us a good idea ofwhere we currently stand in terms of two major indicators of the experimental quality ofour algorithms: speed and robustness.
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Chapter 6
Probabilistic Analysis
Given a set of n points, what is the description complexity of their convex hull? In the worldof analysis of algorithms, this question is understood with an implicit \in the worst case",and the answer is O�nbd=2c�, where d is the dimension of the underlying space. This is notentirely satisfactory, as this description complexity can vary tremendously depending onthe positions of the points. Another type of answer is to look at the expected descriptioncomplexity when the points are drawn from a given distribution. This type of analysis,initiated by R�enyi and Sulanke [87], is valuable because this expectation is in general muchsmaller than the worst case, and, more importantly, because it often allows one to designalgorithms whose expected running times are much better than the worst case [22, 43].In this chapter, we study theoretical bounds for the expected number of changes ofcombinatorial functions of moving points drawn from prescribed distributions, as well asexpected time bounds for kinetic data structures that maintain these combinatorial func-tions. * * *We �rst need to choose a probabilistic model from which to draw a random scenario.The �rst assumption we make is that the motion parameters of all items are identicallyand independently distributed. Then comes the choice of distribution of random motionparameters for each item. We consider that the position of an item p at time t is given byp(t) = sp + tvp79
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80 CHAPTER 6. PROBABILISTIC ANALYSISwhere sp (the initial position) and vp (the velocity) are independently and uniformly dis-tributed according to a probability density g. We say that an item with this randomequation of motion is a g-random item. In this case, p(t) is also a random variable in theplane whose density is gt(z) = ZR2 g(v)g(z � vt)dv : (6.1)Let us discuss some other possible choices of probabilistic models. First, we could use adensity g0 that could be a translation, rotation or uniform scaling of g, but the expectationswe are concerned with wouldn't change, because the attributes themselves are invariantunder such transformations.Instead of de�ning the motion of an item by its initial position and velocity, we couldhave instead decided to select the initial position (at time 0) and �nal position (at time 1)of each item according to the density g. This choice makes sense, but it is in fact exactlyequivalent to ours. Indeed, the position of an item at time t with initial position p0 and�nal position p1 is: p(t) = (1� t)p0 + tp1If we let ~p(u) = (1 + u)p� u1+u�, and let u vary from 0 to +1, we have:~p(u) = p0 + up1Therefore, if there is an event at a time t in a model in which each item is de�ned by aninitial position and a �nal position, there is also an event at time t=(1� t) in the model inwhich the �nal position is transformed into a velocity.By symmetry, the expected number of events in the initial/�nal position model is thesame during the time interval [0; 1=2] and during the time interval [1=2; 1]. Hence, in ourmodel, the expected number of events is the same during time interval [0; 1] and [1;+1].In the remainder of this chapter, we consider only events happening between time 0 and 1.* * *The general method for the three forthcoming sections is as follows. We describe it
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81for the convex hull for de�niteness. We �rst focus on three items in order to compute theexpected number of times they are involved in a change to the convex hull. We identify thecondition of this event (no other item to the right of the line de�ned by the three items whenthey become collinear), and introduce a change of variable � to condition upon the line ofcollinearity. We bound the Jacobian of the transformation and perform routine integration.There is a technical detail: the change of variable formula requires � to be one-to-one,but the parameterization will cover each triplet of items up to twice (this is because thetime at which three items become collinear is the solution of a quadratic equation). Toavoid this, we introduce an intermediary spaceM on which � is one-to-one.* * *For completeness, let us start by examining one-dimensional problems. It is straight-forward to show that in the present probabilistic setting, and for a set S of n items withrandom initial position and random velocity in the unit interval, the expected number ofchanges to a sorted order is �(n2): indeed, by symmetry, a given pair has probability 12 ofever crossing, and this bound holds for any distribution (it is based only on the ordering ofthe initial positions and velocities, and relies only on independence).The case of the maximum is once again more di�cult, and the exact bounds dependon the distribution. However, a duality argument allows us to link it directly with existingstatic results. Indeed, the trajectory of an item s 2 S in time/space is a line y = ast+ bs,where as; bs are independently drawn from a �xed distribution. By a standard duality, theupper envelope of all the lines becomes the upper convex hull of their dual points. Each item,in the dual, is a point (as; bs), and each coordinate is independently distributed accordingto the original distribution. There are two cases in which we know the result directly: ifthe distribution is uniform on an interval, then the convex hull has complexity �(log n). Ifthe distribution is a Gaussian, then the complexity of the convex hull is �(plog n). Thistechnique does not generalize to the convex hull in two dimensions, and this case will betreated in Section 6.3.We note also that, in one dimension, the Voronoi diagram is nothing but the sortedorder, and it therefore changes quadratically many times in our model.
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82 CHAPTER 6. PROBABILISTIC ANALYSIS6.1 Closest PairIn this section, we assume that we have a bounded density g with compact support.A change in the closest pair description happens at a time t if the distance betweentwo items p1; q1 is equal to the distance between two items p2; q2, and there is no pair at asmaller distance at t. We �rst focus on a given quadruplet P = (p1; q1; p2; q2) of independentg-random items, and an additional tuple U of n other independent g-random items. Wecompute the probability that the quadruplet P de�nes an event for the closest pair.More precisely, the equation d(p1(t); q1(t)) = d(p2(t); q2(t)) is quadratic in t, so it canhave up to two solutions. Hence, we are not going to compute the probability that Ptriggers a change in the closest pair, but the expected number of times it can do so, i.e.:E���ft j d(p1(t); q1(t)) = d(p2(t); q2(t)) ^ d(p1(t); q1(t)) =Mt(P;U)g��� (6.2)where Mt(P;U) is the smallest pairwise distance amongst P [ U at t.It is inconvenient to work with the expression above. A more convenient replacementfor (6.2) can be obtained if we de�ne:M = �(p1; p2; q1; q2; t) 2 R16 � [0; 1] j d(p1(t); q1(t)) = d(p2(t); q2(t))	For � 2M, denote by P� the associated quadruplet of item parameters, t� the associatedtime, and r� the common distance between pi and qi at time t�. We equip M with themeasure � induced from R16 , i.e.,ZM f(�)d� = Z�2M f(�)g(P�) dP� ;where g(P�) is a shorthand for the product of the densities of each item of the tuple P�. Inthis case, the expected number of changes to the closest pair due to P is:� = Z(�;U)2M�R4n [Mt� (P� ; U) � r�]gt� (P�)gt� (U) dP� dU (6.3)The computations to come are rather involved but the idea is simple. We computethe expectation conditioned upon the distance r between the closest pair when the event
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6.1. CLOSEST PAIR 83happens. For the upper bound, we replace Mt� (P�; U) by Mt�(U) and integrate �rst withrespect to U . The quantity ZU [Mt� (U) > r�]gt� (U) dU ;in which r� and t� are �xed, is the probability that the closest distance of a set of n randompoints is greater than a given quantity at a time t�. It is directly given by Theorem 2.9,from which we obtainZU [Mt� (U) > r�]gt� (U) dU = exp(�cgt�n2r�2)(1 + o(1)) ; (6.4)where cgt� is a constant that depends on t�. We letC = mint cgt :The quantity (6.4) is at most exp ��Cn2r�2� (1 + o(1)) :If we put this bound in (6.3), we obtain:� � (1 + o(1))Z�2M exp ��Cn2r�2� gt� (P�) dP� : (6.5)The positions of p1; q1; p2; q2 are not independent conditioned on r�, so it is necessaryto do a change of variable to account for the dependencies. We express the position of qiin terms of its distance to pi at time t. That is, we replace the variables (sq1 ; sq2) in theintegral by the variables (t; r; �1; �2), with the following transformation � (Figure 6.1):� : (sq1 = sp1 + tvp1 + r�cos �1sin �1�� tvq1sq2 = sp2 + tvp2 + r�cos �2sin �2�� tvq2Note that although two points in the domain of � can give the same quadruplet of itemparameters, they map to di�erent points on M, so that � is one-to-one. This is themain reason to introduce the space M. The Jacobian of this transformation, obtained by
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Figure 6.1: Parameterization for the closest pair.computing all partial derivatives, is:J� = r2 �����������vxp1 � vxq1 cos �1 � sin �1 0vyp1 � vyq1 sin �1 cos �1 0vxp2 � vxq2 cos �2 0 � sin �2vyp2 � vyq2 sin �2 0 cos �2
�����������As all terms in the determinant are O(1), we obtain:jJ�j = O(r2)We restart from (6.5) and apply the parameterization just described with the change ofvariable formula (Theorem 2.10). We have:� � (1 + o(1))Z jJ�je�Cn2r2 Yi=1;2 (g(spi)g(vpi)g(sqi)g(vqi) dspi dvpi dvqi d�i) dt dr= O(1) Zr r2e�Cn2r2 dr (6.6)The passage to the last line is done by integrating with respect to all variables except r.The last integral is �(1=n3) by Proposition 6.5 (see Appendix).* * *This upper bound is matched by a lower bound up to a constant. To show this, ourgoal is to replace [Mt� (P�; U)] by [Mt� (U)] because Theorem 2.9 gives a lower bound onintegrals involving the latter quantity. To do this, we focus on a subdomain in which the
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6.1. CLOSEST PAIR 85two quantities are the same, making sure that the subdomain is large enough to capture apositive fraction of the probability content we want to estimate.Let us restart from (6.3) and restrict once and for all the domain of integration tor� � 1nIn this domain, we can write the following logical inclusion:[Mt� (U;P�) � r�] � [Mt� (U) � r�] ^ [8u 2 U;d(u; pi) � 3n ] ^ [d(p1; p2) � 3n ] : (6.7)In words, if point u is more than 3=n away from pi, then it is more than r� away from qi.We'll see that we don't loose much if we replace the left hand side by the right hand sidein (6.3). Consider now, for a �xed �, the integralZU [Mt� (U;P�) � r�][8u 2 U;d(u; pi) � 3n ]gt� (U) dU= �ZU [8u 2 U;d(u; pi) � 3n ] dU� ZU [Mt� (U;P�) � r�]h�(U) dU (6.8)where h�(U) = [8u 2 U;d(u; pi) � 3n ]gt� (U)RU [8u 2 U;d(u; pi) � 3n ] dUis the density for U at t� conditionally on the fact that no item is too close to any point ofpi or qi.The right term in (6.8) is the probability that Mt� (U) is greater than r� conditionedupon no point of U being too close to pi or qi at t. By Theorem 2.9, this quantity islower-bounded by exp��c0�n2r�2�(1 + o(1)) :The support of h� is bounded and its maximum value is also bounded. Hence, c0� is boundedfrom above by a constant, which we denote C 0. Using (6.7), we have:� � Z� e�C0n2r�2 [d(p1; p2) > 3n ]g(P�) dP�
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86 CHAPTER 6. PROBABILISTIC ANALYSISwhere the domain of integration is, let's repeat it, restricted to r� < 1n . We can furtherrestrict the domain so as to make [d(p1; p2) > 3n ] true. For instance, we can look only atthose samples in which p1 is in the top third of the support of gt and p2 in the bottom third.After a change of variable, we have a Jacobian in the integral, but this Jacobian vanisheson a set of measure 0. By symmetry, the domain of integration can be further re�ned sothat the Jacobian is always 
�r2�. The result is an expression like (6.6), which gives thebound of �� 1n3 �. In summary, we obtain the lemma:Lemma 6.1. Let P = (p1; p2; q1; q2) be a quadruplet of independent g-random items andU be a set of n more. The expected number of times d(p(t); q1(t)) = d(p(t); q2(t)) with noother pair at a smaller distance is �(1=n3).There is another case that is not addressed in the above: when the closest pair (p; q1)changes to the closest pair (p; q2). We need another lemma for this case. The proof proceedssimilarly to the one above.Lemma 6.2. Let P = (p; q1; q2) be a triplet of independent g-random items and U be a setof n more. The expected number of times d(p(t); q1(t)) = d(p(t); q2(t)) with no other pairat a smaller distance is �(1=n3).We now use linearity of expectation to sum over all possible triplets and quadruplets ofitems to obtain:Theorem 6.3. Let U be a set of n independent g-random items in the plane, where g isbounded with compact support. The expected number of changes to their closest pair is �(n).6.2 Voronoi DiagramThe Voronoi diagram of a set of items in motion changes when 4 items become cocircular,and no other item is inside their circle of cocircularity at that time [58]. We consider onceagain four distinguished g-random items (p1; p2; p3; p4), and compute the expected numberof changes to the Voronoi diagram due to these items, in the presence of a set U of n otherg-random items.The ideas are very similar to that of the previous section, and even more similar to theoriginal treatment of R�enyi and Sulanke mentioned in Section 2.1.3. Let us give here the
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6.2. VORONOI DIAGRAM 87general idea. We condition the probability that our quadruplet generates an event upon thecircle along which the cocircularity happens. Say that the radius of this circle is r. Mostcases happen when the circle of cocircularity is very small and around the center of thedistribution. In this case, the probability that an item u is inside a circle of radius r is �r2,and hence the probability that this circle is empty is roughly e��nr2 by our independenceassumption. The probability that each item pi is \on" the circle is proportional to itsperimeter, that is to say, it is 2�r. Hence the conditional density of r, the radius of thecircle of cocircularity, is about ��r4�, and the probability that our quadruplet generates anevent is about �(1) Z e��nr2r4 dr (6.9)This integral is �� 1n5=2� by Proposition 6.5. Summing over all ��n4� quadruplets, weobtain that the expected number of changes to the Voronoi diagram is ��n3=2�.From this back of the envelope calculation, we have the following conjecture:Conjecture 6.4. Let g be a bounded density with compact support. The Voronoi diagramof n independent g-random items changes ��n 32� times.Alas, the computations are much heavier than this synopsis suggests. There are twomain reasons for this. First, we need to perform a parameterization as in the closest pairproblem. Second, we need to treat separately a lot of boundary cases. For instance, if welet g be uniform on the unit square [0; 1]2, the density gt is de�ned by di�erent formulas inthe corners, the sides, and the center. More precisely,gt(x; y) = ht(x)ht(y) (6.10)where: ht(z) = 8>><>>: zt if z � t1 if t � z � 11+t�zt if 1 � z � 1 + tHence, we need to treat separately many cases, depending on whether the circle of cocircu-larity touches the lines x = t, y = t, x = 1, y = 1 and/or the boundary of the distribution
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88 CHAPTER 6. PROBABILISTIC ANALYSIS

t0 t0t0Figure 6.2: Some of the numerous cases for the circle of cocircularity. For those circles thattouch the boundary, the probability content can be arbitrarily small even if their radius islarge.(Figure 6.2).We lack a general way to take care of these boundary cases all at once. This also happensin the static setting [43], although the special cases are less numerous in this latter setting.In this section, we consider a speci�c distribution (the unit square), and we do not treatthe boundary cases. Therefore, we obtain only a partial result. Treating all the boundarycases would add an unreasonable amount of technical details to this thesis. Moreover,Dwyer [39] has very recently obtained the full result for the disk distribution, which makesa full treatment of the square case less interesting.* * *Let D be a disk of center (x; y) and radius r. Let Gt(x; y; r) denote the probabilitycontent of D at time t: Gt(x; y; r) = Z [z 2 D]gt(z) dz :The cocircularity test for four items is a degree 4 algebraic equation in t. To deal with themultiplicity of events triggered by the same quadruplet, we de�ne once again:M = �(p1; p2; p3; p4; t) 2 R16 � [0; 1] j p1(t); p2(t); p3(t); p4(t) cocircular	 :We parameterize M as follows. We replace the initial positions of the four items (8
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Figure 6.3: Parameterization of each moving item with respect to the disk of cocircularity.
dimensions) by (Figure 6.3):8>>>>><>>>>>: x; y positions of the center of the circle of cocircularity,r radius of the circle of cocircularity,t time of the event,�i angle between the horizontal and the vector pi(t)� (x; y) .More precisely, we have: spi = �xy�+ r�cos �isin �i�� tvpiwhere vpi = (vxpi ; vypi) is the velocity of item pi. We denote by � this parameterization. It isone-to-one, and we can apply the change of variable formula (Theorem 2.10). The expectednumber of events is� = Z (1�Gt(x; y; r))njJ�jYi (g(vpi)g(spi) dvpi d�i) dx dy dr dt (6.11)where J� and spi depend on all the parameters of integration.What is the Jacobian of �? Let ci = cos �i and si = sin �i. Computing all the �rst
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90 CHAPTER 6. PROBABILISTIC ANALYSISderivatives gives:
J� =

���������������������
1 0 �vx1 c1 �rs1 0 0 01 0 �vx2 c2 0 �rs2 0 01 0 �vx3 c3 0 0 �rs3 01 0 �vx4 c4 0 0 0 �rs40 1 �vy1 s1 rc1 0 0 00 1 �vy2 s2 0 rc2 0 00 1 �vy3 s3 0 0 rc3 00 1 �vy4 s4 0 0 0 rc4

���������������������If we group line i with line i+ 4, we obtain:J� = r4 �����������vx1 c1 + vy1s1 s1 c1 1vx2 c2 + vy2s2 s2 c2 1vx3 c3 + vy3s3 s3 c3 1vx4 c4 + vy4s4 s4 c4 1
�����������We now restrict our domain of integration to one representative of the most commoncase. We consider only events happening between time 0 and time 1=2, whose circle ofcocircularity is entirely contained in the square [1=2; 1]2. The density gt on this square isequal to 1 on the time interval considered (Equation 6.10), therefore, Gt(x; y; t) is equal to�r2.Note also that the Jacobian can be bounded by O�r4�. Hence, restarting from (6.11),and denoting by �� the part of � restricted to our domain of integration de�ned above, wehave: �� = O(1) Z (1� �r2)nr4Yi (g(vpi)g(spi) dvpi d�i) dx dy dr dtAfter integration along vpi ; �i; x; y and t, we are left with an integral like (6.9). Table 6.1gives an indication that the total number of events is indeed of the order of n3=2.
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6.3. CONVEX HULL 91n nb events 1:29n3=21; 000 40; 899 40; 7932; 000 116; 993 115; 3814; 000 328; 558 326; 3478; 000 919; 680 923; 04816; 000 2; 602; 173 2; 610; 77632; 000 7; 388; 052 7; 384; 391Table 6.1: Average number of changes to the Voronoi diagram. The \nb events" columngives the number of changes to the Voronoi diagram obtained by simulation. The thirdcolumn gives the predicted number of events (the constant is adjusted to match the lastline approximately).6.3 Convex HullThe techniques for the convex hull are very similar to the ones used above for the Voronoidiagram, but here, it is the boundaries that play the crucial role. Hence, the results arevery dependent on the distribution the items are drawn from. In this section, we considerthat all items' initial position and velocity are drawn uniformly independently at randomfrom the unit square.Here again, there are many special cases, and, as for the Voronoi diagram, we computeonly one of them, which we believe is the dominant one: the case when the items are veryclose to a corner. This is the dominant case in the static setting.An event for the convex hull happens when three items become collinear, and all otheritems are on the same side of the line de�ned by the three items. By symmetry, it is enoughto consider only events that happen in the lower left corner, i.e., events such that the lineof collinearity cuts the two axes at positive coordinates, and such that all other items areabove that line. We consider three speci�c items p1; p2; p3 and a set U of n other g-randomitems. We proceed to compute the expected number of changes caused by the collinearityof the pi's.As is now usual, we de�ne the spaceM = �(p1; p2; p3; t) 2 R12 � [0; 1] j p1(t); p2(t); p3(t) collinear	



www.manaraa.com

92 CHAPTER 6. PROBABILISTIC ANALYSIS

t0 a

b

α1a

p1(t)

Figure 6.4: Parameterization of each moving item with respect to the line of collinearity.and parameterize it as follows. We replace the initial position of the three items by (Fig-ure 6.4): 8>><>>: a intersection of the line of collinearity with (Ox),b intersection of the line of collinearity with (Oy),�i position of pi on the line of collinearity.More precisely, we de�ne: spi = � �ia(1� �i)b�� tvpi ;where vpi = (vxpi ; vypi) is the velocity of item pi. We denote this transformation by �.Given two reals a; b, denote by `ab the line that intersects (Ox) at a and (Oy) at b. LetGt(a; b) be the probability content below `ab at t, and At(a; b) the probability content on`ab. Gt(a; b) = Z [(x; y) below `ab]gt(x; y) dx dyAt(a; b) = Z gt(�a; (1 � �)b) d�The expected number of events due to p1; p2; p3 is:� = Z (1�Gt(a; b))njJ�jYi (g(spi)g(vpi) d�i dvpi) da db dt
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6.3. CONVEX HULL 93Let us assume for now that we have an upper bound B(a; b; t) for the Jacobian of � thatdepends only on a; b; t. Once we replace jJ�j by its upper bound, the only terms dependenton vpi are g(spi) and g(vpi). Moreover,Z g(spi)g(vpi) dvpi = Z g(pi(t)� vpit)g(vpi) dvpi= gt(pi(t)) (Formula 6.1)= gt(�ia; (1� �i)b) :Hence, integrating with respect to each vpi , then with respect to each �i, gives:� � Z (1�Gt(a; b))nB(a; b; t)Yi (gt(�ia; (1 � �i)b) d�i) da db dt= Z (1�Gt(a; b))nB(a; b; t)At(a; b)3 da db dt� Z e�nGt(a;b)B(a; b; t)At(a; b)3 da db dt : (6.12)We proceed to compute an upper bound on the Jacobian of �, which is
J� = ����������������

�1 0 �vx1 a 0 0�2 0 �vx2 0 a 0�3 0 �vx3 0 0 a0 1� �1 �vy1 �b 0 00 1� �2 �vy2 0 �b 00 1� �3 �vy3 0 0 �b
���������������� :If we group the i-th row with the i+ 3-th row, we obtain:J� = ab ���������1 1� �1 bvx1 + avy1�2 1� �2 bvx2 + avy2�3 1� �3 bvx3 + avy3 �������� = ab0BB@b ���������1 1 vx1�2 1 vx2�3 1 vx3 ��������+ a ���������1 1 vy1�2 1 vy2�3 1 vy3 ��������1CCA :We wish to obtain an upper bound on the Jacobian. To this end, notice that, as pxi (t) = �ia,the x-speed is at most �ia=t (and also bounded by 1), and �i � 1. Therefore, bounding a
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94 CHAPTER 6. PROBABILISTIC ANALYSISdeterminant by the product of the Euclidian norms of the column vectors:���������1 1 vx1�2 1 vx2�3 1 vx3 �������� � 3p3max(vx1 ; vx2 ; vx3 ) � 3p3min(a=t; 1)Hence the determinant is at most:jJ�j � 3p3ab (bmin(a=t; 1) + amin(b=t; 1))= O�abmin(abt ; a+ b)� :As mentioned above, we consider only one case: when both a and b are less than t. Bysymmetry, we can assume that 0 < a < b < t, and we denote by �� the integral restrictedto this domain. In this case, integrating 6.10 gives:Gt(a; b) = ��a2b2t2 � ;At(a; b) = ��abt2 � :Then, putting the appropriate bounds in (6.12):�� = Z e��(1)na2b2t2 a2b2t �abt2 �3 [0 < a < b < t < 1] da db dtIntegrating with respect to a (Proposition 6.5), we obtain�� = O(1)Z b5t7 min � t2nb2�3 ; b6! [0 < b < t < 1] db dtwhich gives �(log2 n=n3) (see the Appendix).Summing over all triples of items, we obtain the result that the expected number ofchanges to the convex hull in a corner is O(log2 n).* * *The results we obtained for the expected number of changes to the convex hull of items
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6.4. CONCLUSION 95n Nb events Nb ext 5:28n 1:57 ln2 n1,000 5,193 51 5,280 752,000 10,537 67 10,560 914,000 21,207 97 21,120 1088,000 42,650 125 42,240 12716,000 84,804 132 84,480 14732,000 169,052 169 168,960 169Table 6.2: Using the implementation described in Chapter 5, we compute the number ofexternal and internal events for the convex hull, and compare them with the theoreticalbounds obtained in this chapter. The constants are adjusted to make the last line matchapproximately.drawn from the uniform square distribution directly imply an expected linear bound forthe convex hull kinetic data structure described in Section 4.1. This data structure dividesthe point set arbitrarily into a blue and a red half, recursively computes the blue andred convex hulls, and maintains a set of certi�cates between edge-vertex pairs and edge-edge pairs to certify the convex hull of the whole set. If Nb and Nr are the (random)total number of edges that ever appear on the blue and red convex hulls, the number ofevents involved at the top level is O(NbNr). As these two quantities are independent, theexpectation is E(NbNr) = E(Nb)E(Nr) = �(log4 n) in the case of the square distribution.The expected running time T (n) of the whole data structure thus obeys the recurrenceT (n) = O(log4 n)+2T (n=2), which solves to T (n) = O(n). These results make it clear thatit is not a good idea to use the Delaunay triangulation (the dual of the Voronoi diagram) tomaintain the convex hull. Table 6.2 gives the experimental number of events, both externaland internal, showing a close match with the predicted values.6.4 ConclusionIn this chapter we initiated the study of average case behavior of some combinatorial prop-erties de�ned on points moving on random trajectories. It remains to see whether it ispossible to develop a technique that gives full results for the Voronoi diagram and the con-vex hull without the need of a cumbersome case analysis. It would also be interesting togeneralize these results to d dimensions. Preliminary calculations show that the closest pair
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96 CHAPTER 6. PROBABILISTIC ANALYSISchanges ��n 2d� times, the Voronoi diagram changes ��n1+ 1d� times, and the convex hullchanges ��logd n� times for the square distribution.
6.5 AppendixProposition 6.5. Let W = Z a0 x�e�cx� dxThen, W � 1����+ 1� ��c��+1� �W � a�+1�+ 1Proof. By a simple change of variable. Let y = cx� . Then x = (y=c)1=� and dx =(y=c)1=�dy=(y�). Hence we have:W = Z ca�0 �yc��=� e�y �yc�1=� dyy�= 1�c�+1� Z ca�0 e�yy �+1� �1 dyAnd the integral is now the incomplete Gamma function. For the second inequality, simplydrop the exponential term.

We also have:I = Z b5t7 min � t2nb2�3 ; b6! [0 < b < t < 1] db dt = ��log2 n=n3� :
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6.5. APPENDIX 97We compute the integral in three pieces:I1 = Z � � � [0 < t 12n 14 < b < t < 1]I2 = Z � � � [0 < b < t 12n 14 < t < 1]I3 = Z � � � [0 < b < t < t 12n 14 < 1]
I1 = Z b5t7 t6n3b6 [ t 12n 14 < b < t < 1] db dt= 1n3 Z 1tb [ t 12n 14 < b < t < 1] db dt= 1n3 Z 1t (ln t� ln t 12n 14 )[ t 12n 14 < t < 1] dt= 1n3 Z � ln t2t + lnn4t � [ 1pn < t < 1] dt= 1n3 �14 ln2 tj11pn + lnn4 ln tj11pn�= ln2 n16n3
I2 = Z b5t7 b6[0 < b < t 12n 14 < t < 1] db dt= Z b11t7 [0 < b < t 12n 14 < t < 1] db dt= 112 Z 1t7 t 12n 14 12[ t 12n 14 < t < 1] dt= 112n3 Z 1t [ 1pn < t < 1] dt= lnn24n3
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98 CHAPTER 6. PROBABILISTIC ANALYSIS
I3 = Z b5t7 b6[0 < b < t < t 12n 14 < 1] db dt= Z 1t7 t1212 [t < t 12n 14 < 1] dt= Z t512 [t < 1pn ] dt= 172n3
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Chapter 7
Conclusion
A wide range of problems involving motion requires the computation of certain attributesof the moving data at discrete time steps. For instance, to render a dynamic scene, it isnecessary to compute all visible objects at every frame. In a physical simulation, we needto detect collisions, and we do this by checking as often as possible if any pair of objectsintersect.More generally, questions involving motion can often be worded as \keeping track ofa discrete attribute depending on the objects' positions." The discrete attribute might bethe closest pair of objects (for collision detection purposes) or some visibility data structure(for rendering purposes). For such problems, the goal is to exploit the time coherence givenby the continuity of motion, to avoid recomputations from scratch at every time step.In this thesis, we presented a general approach to address such problems. We exhibiteda kinetization strategy based on animating a proof of correctness of a discrete attribute.We also de�ned a framework for analysis, in which di�erent solutions to a given problem canbe compared on theoretical grounds. More practically, as in traditional algorithm design,the analysis framework guides the design of e�cient kinetic data structures.Essentially, kinetic data structures are a new type of data structures, for which there is acraft of design, as exhibited by the closest pair problem (Section 4.2), and general analysistechniques, as shown by the questions involving the maximum maintenance (Chapter 3)and the convex hull problem (Section 4.1).In the same way as one can ask how to maintain dynamically a discrete attribute upon99
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100 CHAPTER 7. CONCLUSIONitem insertion and deletion, or how one can obtain an e�cient algorithm to compute thisdiscrete attribute in a parallel model of computation, it is now possible to ask how to keeptrack of such a discrete attribute kinetically, in the precise sense described in this thesis.We summarize recent results at the end of this conclusion.There are many issues that require further research in this domain, and we start explor-ing a few of them here.7.1 Competitive RatioThe notion of competitive ratio underpins the �eld of on-line algorithms. The idea is todesign an algorithm whose output is provably within a certain factor of an unattainableoptimal solution. In on-line algorithms, the optimal solution is unattainable because itrequires knowing the future. There is a similar notion in approximation algorithms, inwhich the output is unattainable because it is hard to compute.It is tempting to de�ne the same competitive ratio for the running time of a kinetic datastructure. Consider an attribute A, and a kinetic data structure K. The competitive ratioof K for a given class of motion is given bymax eventsKeventsAwhere the max is taken over all possible scenarios. In words, we wish to bound the maximumof the ratio instead of the ratio of the maxima|the latter is what we settled for in thisthesis. Clearly, it would be marvelous to obtain a local KDS with small competitive ratio.Why didn't we use this superb measure of quality in this thesis? There is one simplereason: it proved impossible to design a competitive KDS. Apart from the self-kinetizingattributes, all KDSs we could obtain have the same horrible competitive ratio, attained whenthe worst-case number of changes to the KDS is balanced by no change in the attribute tobe maintained. Because of that, the competitive ratio has so far proven to be useless.Is this due to an oversight on our part? Maybe. For instance, Edelsbrunner andWelzl [48] show a way to compute the median of n numbers that change at constant velocitywith an algorithm that can be seen as competitive: after O(n log n) preprocessing, there areonly external events, which are processed in O(log2 n) time a piece. Moreover, the structure
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7.2. KINETIZATION AND PARALLELIZATION 101is local, in that a change of velocity takes only O(log2 n) time. We therefore have a trulycompetitive kinetic data structure, which was invented more than ten years ago.However, this kinetic data structure is based on the maintenance of the convex hullof the dual of the straight line trajectories followed by the moving values in space-time.It therefore doesn't generalize to algebraic motion. With today's knowledge, we see thisexample as an isolated lucky case.It may be the case, on the other hand, that certain kinetic data structures always havemore events than others. For instance, the Delaunay triangulation KDS can be used tokeep track of the convex hull. What is the competitive ratio between this KDS and theKDS we presented in Chapter 4? Alas, once again, it is possible to construct an examplefor which the Delaunay triangulation barely changes while our KDS changes quadraticallymany times, and vice versa.The question of the existence of a competitive kinetic data structure can be asked non-constructively in an o�-line setting. For a certain attribute A and a scenario (�t), is it thecase that some kinetic data structure exists that keeps track of A competitively? Conversely,can we construct a scenario in which A changes few times but in which any kinetic datastructure within a certain class changes many times? Results of this latter form haverecently been obtained for kinetic binary space partitions and kinetic triangulations [4].7.2 Kinetization and ParallelizationWe can view our kinetization process as starting from a proof of correctness of a staticcon�guration function, and then \animating this proof through time." Not all proofs areequally good for this use. Our locality requirement favors proofs that have a small number ofpredicates involving each item. Thus it will generally be advantageous to start with \shallowproofs"|proofs of small depth|for the static problem, such as one gets, for example, fromparallel algorithms for solving the static version. Techniques already developed in parallelcomputational geometry [10] or in parametric searching [9] may prove to be useful.Taking the question from the other side, is it possible to design parallel kinetic datastructures? Apparently, there is a coordination problem: the time is a global variable, andwe therefore need a global event queue to schedule the events. Shouldn't every event passthrough the top of the event queue, and hence be handled by a unique processor?
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102 CHAPTER 7. CONCLUSIONLet us get back to our divide and conquer convex hull diagram algorithm (Section 4.1).To avoid this global event queue, we can change the structure so that each node of thecomputation tree contains its own event queue. An event queue at a node contains thenormal events for all certi�cates of that node, but it also contains events corresponding totimes when a vertex appears or disappears from one of the two input convex chains. Whena node is asked to update itself up to time t, it recursively (and in parallel) sends thisrequest to its own children, waits until they are done, then processes the events in its ownevent queue. Therefore, in the case of the convex hull, there is some parallelism that canbe exploited.To get further parallelism, it might be possible to get rid completely of a global clock.The kinetic structure could be required to process only events that have some causal de-pendencies in the original order. In a sense, this would amount to performing a kind oftopological sweep [45] of time/space. Would this allow us to get rid of the event queuealtogether?7.3 RobustnessBecause out-of-order events might completely destroy a kinetic data structure, the issueof robustness of a KDS implementation becomes unavoidable. In Section 5.2.1, we saw anumber of heuristics to treat the near-zero cases, which signi�cantly improve the robustnessof a kinetic data structure. There is a question, however, of whether it is possible toimplement kinetic data structures in exact arithmetic e�ciently.Some encouraging work has been done in this direction by Guibas and Karavelas [59].They don't compute numerically as we do the roots of the polynomial associated with cer-ti�cates. Instead, they maintain for each polynomial its so called Sturm sequence, whichbrackets the roots in intervals of varying width. When two failure times need to be com-pared, the intervals are updated just enough to be able to give an exact answer to thecomparison. Although the current implementation uses oating point arithmetic, it seemsthat this method can be used with exact arithmetic. This method is of course rather ex-pensive as it requires maintaining some extra information for each certi�cate, but we canexpect that some gain will be achieved for the following reason: a root doesn't need to becomputed with too much precision, but with only enough precision to answer a comparison.
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7.4. MODELS OF MOTION 1037.4 Models of MotionIn a practical setting, items don't necessarily follow algebraic trajectories. For instance, thecoordinates of a point rotating at constant velocity involve transcendental functions of time.In this case, �nding the exact failure time of a certi�cate might become an expensive task.In interactive contexts, it might not even be possible to know the exact equations of motionof certain items. For instance, in a context where a computer simulation is interacting withthe real world, the positions and velocity of the real objects cannot be known at all times.Clearly, the model of motion that we have adopted in this thesis|all coordinates arepolynomial functions of time|is too restrictive to be of much use in applications, although itis perfectly adequate for theoretical purposes. Is it possible to adapt kinetic data structuresto some other models of motion?In fact, a small addition to the framework will allow us to treat these questions in auniform way. Instead of creating only events for failures of certi�cates, we can introducewarning events, set to happen at times when a certi�cate is not guaranteed to be validanymore. In the case of a system in which some motions are only partially known, it ispossible to compute a lower bound on the failure time of a certi�cate given some boundson the speed or the acceleration of the objects involved. If the equations of motion arecomplicated, we can imagine a numerical scheme that converges to a certi�cate failure timefrom below. With such a scheme, we would perform an iteration only at a warning event,instead of performing all the iterations when the certi�cate is created.In fact, the framework precisely allows for a completely orthogonal treatment of thecombinatorial questions|those are addressed in this thesis|and of the numerical questionsor those raised by uncertain knowledge of motion. Further work needs to be focused onthese latter questions. For instance, here is a simple and fundamental numerical question:assume that we have three items whose positions and velocities are known at time t0, andfor which we have bounds on their accelerations. Compute the farthest time t1 at which weare guaranteed that the triangle de�ned by the three items doesn't change orientation.In the context of partially known motion, a theoretical issue also arises that is againcombinatorial and algorithmic: how best to spend \sensing dollars" in order to acquire theinformation about the moving objects that is necessary to detect the events of interest fora kinetic data structure. This question was partially addressed by Kahan [70].
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104 CHAPTER 7. CONCLUSION7.5 Recent DevelopmentsThere are many attributes in computational geometry that we know how to compute ef-�ciently. For many of them, we also know how to dynamize them, i.e., to create datastructures to maintain them e�ciently upon insertion and deletion of data. The questionis now how to kinetize them.Following the publication of the original paper [17], kinetic data structures have beendeveloped for the maintenance of a variety of structures: binary space partitions [3, 7],closest pair and minimum spanning trees in arbitrary dimensions [21], diameter and widthin the plane [6], rectangle connectivity [65], and collision detection between polygons [16, 52].
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